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A uml'ymg synthesis of the hydrologic response of a catchment to surface runoff is attempted by link-
ing the instantaneous unit hydrograph (IUH) with the geomorphologic parameters of a basin. Equations
of general character are derived which express the IUH as a function of Horton’s numbers R, R,, and
R,; an internal scale parameter Ly; and a mean velocity of streamflow v. The IUH is time varying in
character both throughout the storm and for different storms. This variability is accounted for by the var-
iability in the mean streamflow velocity. The underlying unity in the nature of the geomorphologic struc-
ture is thus carried over to the great variety of hydrologic responses that occur in nature. An approach is

initiated to the problem of hydrologic similarity.

INTRODUCTION

The quantitative analysis of drainage networks has gone
through dramatic advances since the 1960's, mainly afler
Shreve’s [1966] classical paper which led the way for a theoret-
ical foundation of Horton’s well-known empirical laws and
provided a new perspective for many other problems in fluvial
geomorphology. Although these developments are of great
importance for hydrologists, there has been a void in the cou-
pling of quantitative geomorphological analysis with the most
important hydrologic variable, namely, the streamflow re-
sponse to surface runoff of the geomorphological unity, the
watershed. This paper is a first step in that direction with the
conviction that the search for a theoretical coupling of quan-
titative geomorphology and hydrology is an area which will
provide some of the most exciting and basic developments of
hydrology in the future.

Figure 1 shows a hypothetical watershed with the Strahler
ordering procedure: (1) Channels that originate at a source are
defined to be first-order streams. (2) When two streams of or-
der w join, a stream of order w + 1 is created. (3) When two
streams of different order join, the channel'segment immedi-

ately downstream has the higher of the prders of the two com-_

bining streams. The quantitative expressions of Horton's laws
are

Law of stream numbers

N/N, =Ry
Law of stream lengths

LJ/L. =R,
Law of stream areas

AJA,_ =R,

[Schumm, 1956] where N, is the number of streams of order ,
L, is the mean length of streams of order w, and A, is the
mean area of the basins of order w. Ry, R,, and R, represent
the bifurcation ratio, the length ratio, and the area ratio whose
values in nature are normally between 3 and 5 for R, be-
tween 1.5 and 3.5 for R,, and between 3 and 6 for R .

A detailed description of channel networks (which also
presents an outstanding synthesis of the geomorphologic as-
pects of interest in hydrologic response analysis) is that of
Smart [1972]. We refer to Smart’s work for an in-depth under-
standing of many of the implications of the above laws.

a
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A basic question at this moment is, Given an ordered sys-
tem of the geomorphologic elements of a basin and given that
this system, in all its many possible forms and natural appear-
ances, is well described by laws which respond to well-defined
theories [Shreve, 1966, 1967), is there a manner to relate this
order to hydrologic response characteristics? The implications
of such a question are many. Basically, an understanding
would be provided of the role of the geomorphologic proper-
ties in watershed hydrology instead of the so many and not
very illuminating regressions we keep using in the field. The
above question also holds the key for flood analysis in areas of
insufficient or inexistent data as well as for the transposition
of rainfall-runoff event data from one basin to another.

Hydrologists are familiar with the fantastic variety of forms
and shapes that drainage networks may possess, and they are
familiar with the variety of ways that nature may respond to
precipitation inputs into a watershed. We know now that
those shapes and forms of the drainage basin arise in their in-
finite variety from some basic themes, the geomorphological
laws, that nature plays to interpret the structures we encounter
in natural watersheds. It seems to us that there also should ex-
ist some basic themes in the structure of the hydrologic re-
sponse of a basin. These themes should be related to the na-
ture of the geomorphological structure and should contain the
key to the grand synthesis which hydrologists always dream
of. Many researchers long ago declared that this synthesis
could never be quite attained. We do not share this view.

Even more important is the point that just the quest for the
key or for pieces of it at Teast will lead to exciting new per-
spectives in hydrology and will get not only into the quesuons,
What will happen . . . 2, but even more importantly into the
questions, Why wx.tl 1( happen .7, from which we seem to
have been drifting during the last years because of pressing
operational problems.

The for a’link between geomorphologic laws and hy-
drologic response needs some measure of description of the
hydrologc response structure of a basin. The descnpuon used
here is the instantaneous unit hydrograph (IUH) that is equiv-
alent to the unit imipulse response function of the basin;

THE TIME HISTORY OF ONE DROP
OF EFFECTIVE RAINFALL

Consider a watershed such as the one in Figure 1 with a
bucket at the outlet of the basin. We are interested in how fast
the bucket is filled when a volume of rainfall excess of certain

-temporal and spatial characteristics is imposed on.the water-
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shed. To make things simpler and to generalize the results, as-
sume the input is a unit volume of effective precipitation uni-
formly distributed over the basin and instantaneously
imposed upon it. The bucket at the outlet will start empty and
will reach a final volume equal to the total volume of rainfall
excess over the basin. A plot of this volume throughout time is
the cumulative response of the basin, or what is the same, the
total volume yielded as output up to a certain time r,

volume (1) = [ q(n) dt = Y1) (1))
The derivative of the observed F(z) gives the hydrograph of
discharges ¢(r) resulting from the rainfall input. This hydro-
graph ¢(r) is the IUH. A different manner in which to look at
the previous situation will be to search for the probability that
a rainfall drop chosen at random from. the input has reached
the bucket at time ¢. A function describing this probability will
appear as shown in Figure 2, starting at zero at the origin and
reaching unity as time goes to infinity. The ordinate axis of
Figure 2 can be interpreted as the percentage of drops reach-
ing the outlet of the watershed at time ¢ and thus is equivalent
to F(¢) in (1). The derivative of F{(¢), gs in Figure 2, is the IUH
of the basin,

A STATISTICAL FRAMEWORK FOR THE IUH

Lienhard [1964] provided an approach to the study of the
IUH from a purely statistical mechanical point of view. Our
approach is necessarily different, since we want the geo-
morphologic structure to play an explicit role. The derivation
of the probability that a rainfall drop chosen at random has
reached the outlet at time ¢ will be tackled by defining first
some terms. i

1. State is the order of the stream in which the drop is lo-
cated at time ¢. When the drop is still in the overland phase,
the state is the order of the stream to which the land drains di-
rectly. A drop may begin in any state, but all drops eventually
terminate in the highest numbered state, & + 1.

2. Transition is the change of state.

‘3. Nis the number of states, i.c., @ + 1, where  is the or-
der of the basin and the extra state is the bucket or trapping
state.

The probabilistic description of the drainage network is
made through its transition probability matrix:

Pu P2 Pa P~
P= P.:l P2z Pn Pan
Pwvi Pyva Pwa  ***  Pwn

where p, is the probability that the drop makes a transition
from state i to state j. This is the same as the proportion of
drops that, having entercd state i, move next to state j. The
Nth state is the bucket which is a trapping state. ‘

The P matrix is not enough to describe the basin for our
purposes because it daes not take into account the dynamlc
characteristics which influence the time a drop spends in a
state on its way to the outlet.

If the process of a drop going through the basin were one
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d ‘[{applng state

Fig. 1. Third-order basin with Strahler’s ordering system and its

trapping state.

where in each time step the drop made a transition (or, in
other words, we were worried about the number of transitions
and not interested in the time dimension as such), then P
would be enough to describe the situation. But transitions oc-
cur at various times, not at the same time. Indeed, because
there are an infinite number of drops and because time is
treated as being continous, the simple concepts of Markov
chains do not apply without modification to this problem.
Suppose, nevertheless and for the moment, that in each time
step the drop makes a transition, and suppose that the transi-
tion from one state to the next state only depends on the state
where the drop is at this monent (Markovian hypothesis,
which is reasonable), then our problem would be reduced to
finding the state probability matrix ©(n):

r 0 p2 ps  pa O
.0 0 py - pm O

= Q)
0 o0 0 =+ pa 0
0 0 0 0 1

6(n) = 6(0) - ®(n) = 6(0) - P* (3)

where O(n) is a row vector whose elements 8(n) give the prob-
ability that the process (drop) is found in state i at step n. The
matrix ®(n) is the multistep transition probability matrix
whose elements ¢{n) give the probability that the process
goes from state i to state j after » transitions. Vector ©(0) is
the initial state probability vector (a row vector) whose ele-
ments #(0) give the probability that the process starts at state i
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or, in otherfwords, that the drops starts its travel in a stream of
order i.

Unfortunately, the simple scheme described above is not
applicable to our problem because the state at a given time
depends on the time between transitions as well as the number
of steps, or transitions, to reach a certain state. In a watershed
the time between transitions depends on the location of the
drop because different streams in the same catchment have
different dynamic characteristics. We think of this as a semi-
Markovian process whose successive state occupancies are
governed by the transition probabilities of a Markov process
but whose time of stay in any state is described by a random
variable that depends on the state presently occupied and on
the state to which the next transition will be made. Thus at
transition instants the semi-Markovian process behaves just
like a Markov process. We call this process the imbedded
Markov process. Nevertheless, the times at which transitions
occur are governed by a different probabilistic mechanism.

THE FORMAL MODEL

The order of the streams occupied by the drop on successive
transitions are governed by the transition probabilities p, of
the imbedded Markov process. But the time r, that the drop
will spend in state i before making a transition to state jis a
random variable that can take on any positive value with
probability density function k(7). We define now an uncon-
ditional waiting time in state i, 7, as the time spent by the
drop in state i when one does not know its successor state. The
7; is a random variable described by the waiting time density
function

N
wit) = X phf7) @
=1

Following Howard [1971], we can define

" H( ) matrix of holding time density functions, N X N;
W( ) N X N diagonal matrix whose ith diagonal element
is the unconditional waiting time density function
wl )
*W( ) N X N diagonal matrix whose ith diagonal element
is the complementary cumulative distribution

“w{f) = L"py - Prob [7,>1].
In this general model of the continuous time semi-Markov
process the interval transition probabilities are given by How-
ard [1971]:

N ]
dt) = 8,7 wit) +, Elp,‘, j: dr + hi(T)buft — 7) )

i=12-,N j=12,N

where ¢,(f) represents the probability for the drop to go from
state i'to state j in the time interval r and 8, is

§,=1

v

8,=0

i=j
ik j
In matrix notation,

o) =W + f  dPOHEIOC - 1) )

where the operation P 00 H(7) stands for multiplication of cor-
responding elements.
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Equation (6) will not take us very far because it is quite dif-
ficult to solve and it is impossible to generalize the results.
Nevertheless, we can make two assumptions which make
things considerably simpler:

1. Holding times 7, are independent of destination state.
Then

h[1) = w7)
POH(7) = W(7) - P()

2. Times between events are well described by the func-
tionally appealing exponential density function. Thus the
waiting time of the drop on a stream of order i is given by

w{r)=Ae™™  Twlr)=e

where A, is a different mean waiting time for each stream or-
der.

Assumption 1 is quite realistic for the traveling of a drop;
assumption 2 will be shown to be a reasonable hypothesis
later on in this paper.

The mean waiting time matrix is A~', where

A0 0 0

0 A 0 0
A=

i 0 % sl

0 0 0

the A, being the inverse of the mean waiting time in streams of
order i.
The two previous hypotheses allow a drastic simplification

of (6). Defining a transition rate matrix as

A=AP-])
-_Al 2 Py Api A v 0]
&l
A= 0 =A; E Py Apss -+ 0
2
| 0 0 0 0_
Volume (t)

time, }

Volume(1) =(1g{1)dt =V, 4V(11_ U (=g (1)
dt

Fig. 2. Effective rainfall volume collected at the trapping state as
function of time, resulting from a unit input of precipitation.
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the interval transition probability matrix becomes [Howard,
1971)

D) =eM

where e is defined as I + A7 + (A%2/2!) + - .

Our final goal is the state probability matrix #(f) whose ele-
ments 8(r) give the probability that the drop occupies state i at
time £,

™

é() = 6(0) - B(1) @)

where @(0) represents the initial state probability row vector
with the same interpretation we gave it in (3). The #(0) de-
pends on the spatial character of the rainfall, but under our
assumption of uniform precipitation it will be extremely easy
to compute.

Really, we are interested only in the last term of the row
vector #(t), which gives us the probability that our drop is at
the bucket or outlet of the basin at time ¢ and which we have
pictured in Figure 2. Howard [1971] shows that the ex-

ponential transform of (7) is given by
@e(r) = [s1 — A]"" ©)

Thus in order to find ®(r) we need only to carry out (9) and
then make a straightforward inversion of the transform. We
will show this in detail for a third-order basin.

THIRD-ORDER BASIN IUH
In this case, N = 4, and we have

s+A =Ap2 -Aps O
0 5 +A1 -Az 0
sl — Al = 10
[ ] 0 0 s+A =A, (o
0 0 0 s

where use has been made of the fact that
Prau=pr=0 Pr=pu=1

Next we evaluate the inverse matrix [sI — A]™"

1
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a]“l az‘=l 034-] a“-l
- Az —Aps) o
b|4 (Azﬂ-hl)(kl “A’) b-‘\. 0 b,.—ﬂ b“-ﬂ
by APz e A
A2 —A)As = Ay) e VP W
Caa no Cas =0
- Adz — AAapys i A
e (A, - A'.)(Az - A;) * A:t - A2
dyy=~—1 =0

The probability that a drop chosen at random in state i ({ =
1, 2, 3, 4) has reached the outlet at time { is given by

AJE)‘Z = ’\Qul M

bl =14 = Ao 2

AAp; M
A2 =A)As = Ay)

+ Al‘\Z_AI‘\iIB M

(A = A)A—-A) (13)
'\3 - Al —Ayt
du()=1+ Az_he"r‘+)\’_he“ (14)
dy(f)=1—e™ (15)
Trapping state
Pui() =1 (16)

It is easy to check that in all cases, when t — o0, ¢(r) — 1,
and when ¢t — 0, ¢,4(f) — 0, which have to hold from a phys-
ical point of view.

The probability that a drop chosen at random has reached
the outlet at (or before) time ¢ is given by

0.4(0) = 6,(0) * $14(1) + 8x0) - (1) + 6:(0)  $3(1)  (17)

AT R A )
SGHASHA)  AP(s+tA) AP+ APLGGEHA) AdAwL +HAARLE +A)
0 S(S + A|)(5 + AJ) SA:(S + A|) A:Aj(.i' + A.])
0 0 s(s+ANs+Ay) Aas+ A)(s+Ay)
0 0 0 (S+A)E+ A5+ A)

and proceed to wrile it in a partial fraction expansion form,

| 1 1 1
—Al' = — + + o
["l ] 5 [au] s+ h| [bu] 54 hz [Cu] 5 h] [ u]

(11
Equation (11) is the expression of ®°(1), and the interval

transition probability matrix is obtained by inverse ex-
ponential transformation,

(1) = [a,)] + e b)) + ec,] +e™d] (12

As we discussed for (8), we are only interested in the terms of
the last column of ®(¢), namely, ¢.(f), where i = 1, 2, 3, 4.
This column, when multiplied by the row vector 8(0) of (8),
yields 8,(z), or state probability for state 4.

It is straightforward to obtain the above terms,

where use has been made of the fact that 8,(0) = 0. At this
point we should add the irrelevance of the random entry, en-
tering a continuous Markov or semi-Markov process at a ran-
dom time rather than when a transition is completed does not
affect the statistics of the process in any way [Howard, 1971).

We have defined 6(0) as the probability that the process
starts at state i, or in other words that the drop starts its travel
in a stream of order i. Thus we can write

60=4"  60=25 o=

where A* (i = 1, 2, 3) represents the total area of order i
draining directly into a stream of order i and A is the total
area of the basin.
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The IUH for the third-order basin is now

dfh(f) d¢,4(t)

IUH(?) = = 6,(0)

+0,0) 220 ) 20 19

Our goal is to relate the 8(0) terms and the dp,.(r)/dr terms
to the geomorphologic Horton numbers.

For a basin of any order there are two types of terms mak-
ing up dg,x(1)/dt, namely, the X, terms and the p,, terms. The p,
terms can be related directly to the geomorphological parame-
ters. The p, stands for the probability that a drop goes from a
stream of order i to a stream of order j, for the third-order ba-
sin we only have p,, and p,;. The question may arise, given
that we can compute directly in each case from topographical
maps the terms 8(0) in (18) as well as p,, and p,; (the propor-
tion of first-order streams draining into second-order and
third-order streams), Why express the p, and the #(0) as func-
tions of geomorphologic parameters? The reason for this is
that one of the main goals of this research is to find out if the
geomorphologic order of things is related to the hydrologic re-
sponse. Thus instead of using (19) (or similar equations for
basins of other orders) as just a tool for synthetic IUH deriva-
tion in each particular case it is important to write it as a func-
tion of those parameters which express the geomorphologic
order as a result of the structural dictates of space. This we see
as a way of bringing harmony and explanation to the infinite
patterns of hydrologic response that nature creates and that
arise, maybe, from the working of a few formal themes. Thus

L number of streams of order 1 draining into order §
Pu total number of streams of order 1

i=23 (20)

There are N, streams of order 1 of which 2N, make up for
the streams of order 2. The remaining (N, — 2N,) streams of
order | drain into streams of orders 2 and 3. Following Smart
[1968], we will assume that the lengths of interior links in a
given network are independent random variables drawn from
a common population. This assumption implies that the dis-
tribution of interior link lengths is independent of order, mag-
nitude, or any other topologic characteristic, and then we may
write that the (N, — 2N,) streams of order | join streams of or-
ders 2 and 3 according to

number of links of order i

W total number of links of orders 2 and 3

—2N,)*

i=2,3 Q1)

The mean number of links of order w in 2 finite network of
order § is [Smart, 1971]

1

B0 =N 35 -7 ©=238
a=2 -

Thus (1) the number of links of order 2 equals N[(N, = 1)/
(2N, — 1)), say, x, and (2) the number of links of order 3
equals N:[(N, — 1)/(2N;, — )] * [(N2 = 1)/(2N; — 1)), say, y.
Since N, = 1, the ratio x/(x + y) gives N/(2N, — 1).

1413

Thus on the average the number of streams of order | that
drain into second-order streams is
N.

2N, + s (Y

2N2 I—ZNQ)

We may then write

R.z + ZR,— 2

ZRBZ - Rg (22)

Puz=

Similarly, we can estimate the value of p,, for basins of order
3as

—3R;+2
P 2R, - R, (23)
Having written the p, as a function of Horton's gcomorpho-
logic parameters, we will proceed now to do the same with the

initial probabilities §(0) of (19). Equation (18) shows

9,(0) = A_' - L’L - RszR,c—z
Ar A,

29

*

A
6,(0) = A!-,-

A *
0;(0) = 'AZ—T

some analysis being necessary to rewrite 4,* and 4,*.

The number of streams of order 1 available to be tributaries
of orders 2 and 3 is N, — 2N; of those the number going intc
second-order streams may be wrilten as

number of links of order 2
total number of links of orders 2 and 3

{N. - 2N2)

=(N,=2N;)-

2
2N, — 1
Thus on the average a stream of order 2 has

1
(N, —=2N,)- ZN'.»_—I +2

streams of order | that drain into it.
The average area draining directly into a second-order
stream is

N, - 2N,
A, -4, [ZN,—l +2]
and
8,(0) = —ulz‘lz ( 2‘\;‘ + 2)]
_ Ry _RS+2R—2R,
= R.”  RXR,—1) (23)

We proceed along similar lines to write 8,(0) as a function
of Horton’s ratios. There is one stream of order 3 into which
drain all the N, streams of order 2. In addition, there are

N, (N, — 2N;)

Ny~ 2N, -1

— 2N,

first-order streams draining directly into the third-order
stream.
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Fig. 3. Representation of a third-order basin as a continuous

Markov process.

The area A,* draining directly into the third-order stream
can then be written

N](N| o ZNz) 1

AT—NJAZ_-JlINl_' 2N, — 1 2N,
Finally,
_ . _ Ry, 1 [Ry(Rs—3R,+2)]
=1 R, R,.Z[ 2R, —~ 1 | (26)

There are some mathematical restrictions imposed on the
values which R; and R, can take. Obviously, all the 6(0) have
to be between zero and 1 and also ¥, 4(0) = 1. Thus from the
expression of §(0) for @ = 3 or for any other € one immedi-
ately needs R, > R,. Similarly, other restrictions appear in the
ratio R,/R; for higher-order 8,(0). From a simple evaluation
of the equations we concluded that the generalization of the
0,(0) as a function of R, and R, can be carried out wherever
the ratio R,/R, = 1.2. Even for much smaller values than 1.2,
in most cases the generalization is still valid. The above
mathematical problem, that for highly unusual values of R,
and R, one may get negative §{0) (which of course have no
meaning), does not seem to impose major limitations for the
study of drainage basins. In any case these restrictions follow
from the basic assumption of random topologic development
of drainage networks. Going back to (19), the only remaining
terms to be expressed in a general manner are the parameters
Afi = 1,2, 3). The waiting time of a drop in a state of order i is
assumed to be a random variable exponentially distributed
with parameter A, Therefore

E [waiting time in state ] = A,"' @n

In this manner, A,~' is the mean time spent by a drop in state i
when consideration has been made of both the time spent as
overland flow and the time spent as streamflow. The impor-
tance of the overland waiting time appears to be rather
smaller than that of the stream waiting time under the frame-
work of analysis taken in this paper. When one considers
drops traveling through a stream of order i, most of them will
come from the two streams of order i — 1, which make up for
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the stream in question, or from tributary streams which drain
along the route of our stream of order /. The only drops af-
fected by overland waiting time will be those draining directly
by overland flow into the stream of order i. These drops are in
number considerably fewer, in general, than the above ones,
and thus we feel that in average terms the mean waiting time
in state i will be the streamflow waiting time. Only for streams
of order 1 would one expect that most of the drops, except for
channel precipitation, are affected by overland waiting time;
because of the smaller size of the order 1 areas, this time is
nevertheless considered to be of minor importance in the
overall IUH.

It would also be possible to extend Horton's stream order
concept to make the first order be overland flow under the
frame work presented in this paper. Nevertheless, this was not
done in our analyses in order to maintain the simplicity of the
results,

THE WAITING TIME MECHANISM

As mentioned earlier in this paper, the impacting advances
of quantitative geomorphology show dramatically how the at-
tribures of a watershed are decided by the constraints of
space. This is even more explicit when one considers the small
range of variation that Horton ratios have in natural river bas-
ins. Most of the basic principles governing the hydrologic re-
sponse are believed to be known, but the apparent complexity
of the phenomena prevents us from understanding and ex-
plaining them. As Weiskopf[1977] beautifully put it in his def-
inition of the external frontier of science, ‘the external frontier
delimits the exploration of those realms of nature that lie
beyond currently understood principles . . . an understanding
of the principles by no means implies an understanding of the
world of phenomena.’ To explain the world of hydrologic
phenomena, it will be necessary to develop scientific theories
of general character. In respect to the structure of the hydro-
logic response these theories by necessity will have to be
linked to the geomorphologic structure.

The IUH by (19) has been expressed as a function of R,,
R;, the watershed order £, and the A. We know that river ba-
sins can change the shape of their IUH in response to a
change in scale, and yet, at the same time, and in seeming
contradiction, have the same shape at different scales. Since
the scale does not depend on R,, R,, or {, the reason for the
above observation should lie in the A, which should contain
both a size effect and the dynamic component of the response.

How realistic is the assumption of an exponential distribu-
tion for the random variable describing the waiting time for
streams of order i? We feel it is quite a workable one; consider
a basin of, say, order 3 with L, = 250 m and assume a velocity
of 2 m/s. For the first-order streams the time of residence is
1.25 min for those drops traveling the whole course of the av-
erage first-order stream. With an R, = 3 (L, = 2250 m) the
time of residence for the drop traveling the whole third-order
stream is about 18 min. Thus except for long streams of the
highest order in larger-order basins the average waiting time
of a drop seems to be localized in the first two intervals in
which we will be estimating the IUH (for example, intervals
of 10 min). The true distribution for the waiting time will be
something like a gamma type starting at zero and positive
skewness; if the mean of this distribution is as we have seen
above, close (for our purposes) to the origin, then the mode
will be even closer to the origin, making the exponential as-
sumption a realistic one.
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For the stream of the highest order we prefer to modify the
exponential distribution for fwo reasons:

1 Amdxscussedbefm,themodeataﬁsloabxﬂtothenght

2. More important is the fact that the assumption of an
exponential distribution is equivalent to that of a linear reser-
voir. This for the highest-order stream implies that the basin
excited by an instantaneous input responds with an ex-
ponential type of outflow. This exponential type of response
coming from the highest-order stream'will produce a hydro-
graph for the whole basin which does not start at zero but at
an ordinate equal to the ordinate at the origin of the partial
unit impulse response function eom:spondmg to the highest-
order subbasin.

Since the mathematical theory becomes extremely cumber-
some for nonexponential distributions of the waiting times,
the subbasin of the highest order is artificially represented as
two linear reservoirs. This is shown in Figure 3, which pic-
tures the connections between the different parts which make
up the structure of the basis for the case 2 = 3. Notice that
drops in the second-order streams can only go to the third-or-
der stream, but now the third-order stream is represented
by two states 3a and 3b. State 3a receives the drops from all
second-order streams, part of first-order streams, and those
drops draining directly into the third-order stream. All these
drops are passed to the state 3b, which is the one that feeds the
bucket. We wish that the combination of 3a and 3b, that is to
say, the third-order state, had a mean waiting time of A;™',
corresponding to the dynamic characters of the third-order
stream. We assign to 32 and 3b identical exponential distribu-
tions with mean waiting times of 0.5A;~'; the sum of these two
exponentials is pictured in Figure 4. The distribution of the
waiting time for the third-order stream is now

Wi(r) = pre™ @8)

with mean value of ;™' = 2p~".

The adoption of the extra state 3b changes the expressions.
for ¢14(f), $24(7), and $s.(7) given by (13), (14), and (15), but the
methodology to obtain them remains exactly the same.

For. a Basin of order 3 the transition probability matrix is
now given by

[ 0 P Pu 0 0
0 0 1 0 0
P= 0 0 0 1 0 (29)
0 0 0 0 1
0 0 0 0 1
and the transition rate matrix becomes

A Ap Ay 0 0
0 ‘-hz Rz 0 0
0 0 0 _ng n;
0 0 0 0 0

1415

Calling the bucket state 5 and calling former states 3a and
3b states 3 and 4, respectively, one finds :

" doy) dés(0) debas(0) deps(t)
IUH = _"E(a_ =6,(0) ;: + 6,(0) -+ 6,(0) e
31

where use has been made of the fact that 6,(0) = 0. The deriv-
ative terms in (31) are given by

¢,,(:) =14+ A ™M+ A ™Ayt e+ A ™
where \,* = ZX, and
A= A" VA2 — Al
a (Az -A )(:'\3 - ?‘t):
Ay As*YA2u
2 - Atx‘\!. - h.‘!)z
A= AN = AAs*pis]
A=A - N)
A= {(AJ')JMPU(‘\:' =A)A: =A% =) — [B(A*) — 200,
= 20N + AP = A(As*) pusl)
+ [P = APz — A%
= 0!.): —A AS'AZ .
%(‘) 1 (k’ﬁ - h;)’ [ S A’-t - ’}z € t

5 A2(213 "Az) P
(A=A

6)5(‘) - l = kg‘e_l’.' o Cﬁ,"‘-‘

The partial IUH corresponding to the highest-order sub-
basin (3 in this case) is given by d¢ss(f)/dr and will now start
from zero at the origin.

The equations for the initial probabilities 8{0) and for the
transition probabilities p, as function of the Horton numbers
remain as given before, since they are unaffected by the extra
state 3b, '

As discussed at the beginning of this section, the A, should
contain both a size or scale effect and the dynamic component
of the response. We need a number of A, equal to the order Q
of the basin; nevertheless, this can be tackled in a simple man-
ner. Let » be the average streamflow velocity in the catchment.
Then .

A=v/L 32)

which i.mplies
- V/L| A L A| " R;__z (33)

assuming that for a given rainfall-runoff event the velocity at
any moment is approximately the same throughout the whole
drainage network.

The above assumption is based on the pioneer work of
Leopold and Maddock [1953] and has been experimentally
validated by many studies, the most recent one by Pilgrim
[1977]. Leopold and Maddock show that the change in veloc-
ity in the downstream direction when considering a discharge
of given frequency throughout the basin is very small
Changes in width, depth, and possibly roughness more than
compensate for the effects of slope, producing in theory a very
small increment in the velocity when advancing downstream
during a discharge of fixed frequency. Pilgrim found from

A -A. o RL_|
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Fig.4. Representation of the waiting time probability function at the highest-order stream.

tracer experiments that the average velocity tends to be nearly
constant in a downstream direction.

Equation (33) now gives all the A, as function only of a dy-
namic parameter v, the Horton length ratio R, , and a scale or
size factor L, (or any other L,). Since Ly is easier to measure
with higher precision than L,, it is better to use Lg as scale
factor and write the A, as function of Aq.

The analytical derivation of the IUH was carried out for &
= 3, 4, and 5. The resulting equations show some similitudes
which immediately suggest the possibility of a general syn-
thesis, which will be attempted later in this paper.

A q(hrl"l

8.0

Figure 5 shows examples of IUH’s computed for different
values of the geomorphologic parameters but with a fixed ve-
locity. Figure 6 shows examples of IUH’s computed for the
same set of geomorphologic parameters when v is varying,

THE GEOMORPHOLOGIC TUH

We have expressed the IUH as a function of R, R, R,, the
velocity v, and the scale parameter Ly What is the meaning of
the velocity v? It tells us that the IUH varies both from storm
to storm and also throughout the same storm. It gives us the
key to the time-varying IUH analysis. The dependence of the

Ve=2.0mfec

p [,=250, R=6.0,R,=5.0,R = 2.5
6.0l
4.0,
L,=%00, R, "GO0, R =40, R =13
i Tj= 230, Ry= 40, Ry=30,R +3.8

L2500, Rz 40,Rg=3.0,R, = 25

T.l-looo. R,*8.0,R*3.0,R =28

1
1.9

Fig. 5. Examples of the changes in the [IUH when wzlocity is fixed but the geomorphologic characteristics are changing,
1 (in meters).
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Fig. 6. Examples of the changes in the I[UH when the geomorphologic characteristics are kept constant and the velocity
varies.

TUH on velocity has serious implications in the ways to ap-
proach a design problem or, in general, in the estimation of
the peak flow and time to peak flow of real storms when using
unit hydrograph methods. This topic is discussed by Rod-
riguez-Iturbe et al. [1979]. We believe that many of the criti-
cisms of the IUH analysis based on the fact that different
IUH’s are obtained for different storms and which are com-
monly attributed to the nonlinearities of the system, which of
course exist, may be addressed in terms of a time-varying
IUH. This is substantiated in the results of the companion pa-
pers by Valdés et al. [1979] and Rodriguez-Iturbe et al. [1979).
The effect of v on the IUH will be shown in the experiments of
the next section of this paper. What we are saying is that the
results indicate that the nonlinear effects imbedded in the re-
sponse of a basin manifest themselves in the velocity of the
discharge; thus a time-varying linear framework evolving with
the velocity is a valid one to the problem.

To test the framework described in the previous section,
four natural basins and three synthetically built ones were an-
alyzed in great detail, and a very disaggregated representation
of each of them was carried out by means of a rainfall-runoff
model. Through very controlled experiments a set of IUH’s
for each basin was derived from the rainfall-runoff model
such that each IUH corresponded to a different flow velocity
kept constant during the event. These IUH’s were compared
to the IUH’s derived from the geomorphologic approach. The
experiments, the results, and their implications are described
in the papers by Valdés et al. [1979] and Rodriguez-Iturbe et
al. [1978]. In all cases the agreement was excellent, suggesting
the proposed framework is a valid one. Nevertheless, let us

point out again that the goal of this research is not to imple-
ment a design tool useful by itself specially in ungaged basins.
We need the experiments in order to feel confident we are on
stable grounds, but the aim of the effort is to understand the
nature and development of existing hydrologic hierarchies.
This requires a much deeper insight into the interactions and
their manifestations than we have gained today in hydrology
and geomorphology.

The proposed mathematical framework also makes it pos-
sible to study on a systematic basis

(1) some effects of nonuniform rainfall in the derived re-
sponse function (This study may be carried out by varying the
initial state probabilities #{0) and will shed light on the rela-
tive importance of the different structures which make up the
basin in the hydrologic response of the watershed. A forth-
coming paper by the authors analyzes this problem.) and (2)
the effect of infiltration and other losses in different geo-
morphologic subunits of the basin in the hydrologic response
of the watershed (This study is carried out by adding another
state to the representation of the basin. This state accounts for
the transformation from precipitation to effective rainfall, and
there is a transition probability from each stream order to this
new state.). An important point is that the above analyses can
be carried out on a general basis without being subscribed to
particular basins.

As mentioned before, this paper gives the equations for the
geomorphologic IUH of a third-order basin. But equations for
higher-order basins can be derived with exactly the same
framework. Although the derivation is simple, the procedures
are quite lengthy. This is irrelevant, nevertheless, because the
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1
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4 . 8 v lmucf

Fig.7. Exampies of the variation of the time to peak of the IUH as function of the flow velocity.

equations for all orders are related as will be shown in the
next section of this paper. It is important to notice at this mo-
ment that different hydrologists may assign different §2 to the
same basin, depending on judgment and the scale of the map.
R,, Ry, and R;, on the other hand, do not depend on the scale
of the map. Clearly, the IUH should be the same for both hy-
drologists, but the equations are different in their functional
structure because they represent two differents . It turns out,
as the experiments of the next section show, that both IUH’s
agree almost perfectly as long as one compares, say, an IUH
of fourth order with a certain L, with an IUH of third order

withL,* =L, R, mamtammg in both cases the same R, Rp,
and R,.

THE PEAK AND TIME TO PEAK OF THE IUH:
A GEOMORPHOLOGIC SYNTHESIS

The most importint characteristics of an IUH aré the peak
g, and the time to, peak 1,. As long as these two factors are cor-
rect, the exact form of the IUH is not very important, and a
triangular approximation is quite satisfactory [Henderson,
1963]. Unfortunately, the sum of exponential functions in the
IUH expression does not lend itself to mathematical manipu-

b
q (hreh)
1.0}
od. MOROYIS
IBON
os|
o4l
oz}
o e = A L i i
I 2 3 4 5 V imAs)

Fig. 8. Examples of the variation of the peak of the IUH as a function of the flow velocity.
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lation in order to obtain the maximum of the function. Thus
we resorted to an accurate approximation involving values of
g, and 1, obtained in the computer from the expressions of the
IUH for different velocities in the range 0.5-6 m/s and for &
=3, 4, 5 with L, (the scale factor) varying from 125 to 2000 m.
These calculations were carried out for 126 combinations of
values of R R,, and R, in the ranges 2.5-5.0, 3.0-6.0, and
1.5-4.1. For fixed R,, Ry, R;, L, and @ one nolices that g,
and ¢, are very simply related to the velocity v.

Figures 7 and 8 show the points obtained for g, and 1, from
the IUH equations for a typical computation and illustrate
how these points can be fitted extremely well by some simple
functional dependence with v. The chosen relationships are

(34)
(35)

where 8 and & depend on R,, R, R,, L,, and Q. Equations
(34) and (35) adjust extremely well the dependence of g, and
1, on v, the R? are indistinguishable of 1, and, more important,
each value of the geomorphologically derived g, and ¢, was
compared with the ones yielded by (34) and (35). This was
carried out for all the 126 combinations of R, R,, and R,
which are calculated for each L, and for each . In all cases,
differences between the exact values of the IUH equations
and those of (34) and (35) were under 10%.

The functional dependence of g, and ¢, on v contained in
(34) and (35) is somewhat expected; if one approximates the
TUH with a triangle, then

@ t)/2=1

where 7, stands for the base time or total duration of the IUH.
The 1, is the time that it takes the last drop of the unit impulse
rainfall to reach the outlet of the basin. Thus f, is some length
over a certain velocity, and g, then will be a velocity over a
length. Therefore # and k have dimensions of L' and L, re-
spectively.

The task is now to find the geomorphologic dependence of
@ and k. With fixed L, and Q a regression analysis was per-
formed between the 126 combinations of Ry, R,, and R, ver-
sus § and k. The regressions giving a better fit are of multipli-
cative form, for example,

k = aRR,R,5

With all the R* above 0.97 and most of them above 0.99
they are shown in detail in the report by Rodriguez-Iturbe et
al. [1979].

It is crucial to understand that the regression analyses per-
formed here are not empirical; we knew the functional rela-
tionship of the geomorphologic IUH, and thus the regressions
have to yield excellent fits. Their only purpose is of an opera-
tional character in order to present general results which are
very difficult to obtain with straight mathematics from IUH
equations because their form, sum of exponentials, does not
lend itself to clean mathematics.

The generalization of the results may be better understood
in terms of an example taken from the computations. For a
third-order basin (2 = 3) and a size parameter £, = 500 m the
following regression equations are obtained for # and k:

9=261R " R* =0997

gGp=0-v

L,=k/v

(36)

k=022R,°*R, ¥R,  R*=0993 37
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ForQ = 3 and L, = 1000 m the equations are
f=131R, " R*=0997 (38)
k=044R,"*R, ¥R, ' R*=0,992 (39)
The important point is that for fixed £ the exponents of R,
R,, and R, variables remain practically the same for all values
of L,. The coefficient in front of the equation for both # and k
is in almost exact proportion to the size of L, in all the ana-
lyzed cases. In this manner, for £ = 3 we can write the general
equations

8=131/L,- R, (40)
k - D‘MLlR'QSSRA—-D.:sRLlﬂ (41)

where L, is expressed in kilometers, since we have used the
coefficients obtained for L, = 1000 m.

The role of  is detected when it is noticed that for the same
L, one finds

(42)
(43)

o= 6a/(R.)
ko =kq- (RL)‘

Notice that while £ is dependent on map scale and subjective
judgment, the Horton numbers are not, and thus (36) and (37)
yield the same values of & and k for a basin that two hydrol-
ogists may have identified with different . This is a conve-
nient and necessary feature for the framework to have practi-
cal value.

Equations (42) and (43) hold extremely well for all the indi-
vidual cases. One may then rewrite (40) and (41) for @ =3 as

1.31
LoR,'1

k= 0-444[.“}!,_"“ R,"-” R,,'“-” RLu:

a-

-1.57
Ry

and for any Q and any L, one has

- g
k =0.44L.R, "R, *R,©*R,' R,
which simplify to
6=131/Ly- R® 449
k = 044LoR,"*R, ¥R, O* (45)

Equations (44) and (45) are the basic general equations which
allow the estimation of the peak and time to peak of the IUH
through the relations
q,=8a-v t,=kfv

In (44), @ represents the slope of the line g, (h™') versus v
(m/s); thus with L, in kilometers one estimates & by means of
(44) and multiplies its value by the velocity in meters per sec-
ond to obtain g, (h™"). Similarly, the k obtained by (45), when
divided by v (m/s), gives the estimate of 1, in hours.

It is interesting to notice that the product g, - 1, is independ-
ent of the velocity v and the scale variable Ly, Calling this di-
mensionless product IR, one may write

IR =g, t,= 0.58(Ry/R,)** - R,*%
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For the range of values one may possibly find in nature, |R
simplifies to

IR = 0.58(Rs/R,)** (46)

The ratio /R is a constant for each basin and indicates that
the IUH description can be acomplished in practical terms
with only one parameter (in this case, either ¢, or ¢,). This ob-
servation has been made in the past in empirical terms by
many hydrologists. It also appears that JR could play an inter-
esting role when trying to approach the elusive and difficult
problem of hydrologic similarity or, in other words, when
trying to make inferences about the structure of the hydro-
logic response of different basins.

CONCLUSIONS

1. The structure of the hydrologic response is intimately
linked to the geomorphologic parameters of a basin. When
the hydrologic response is represented by the IUH, it is found
that it can be expressed in a general manner dependent on R,
Rp R,, a scale variable Ly, and a dynamic parameter v. Thus
the IUH varies from storm to storm and throughout the same
storm as a function of the velocity v which occurs in the differ-
ent instances of time throughout the basin.

2. Equations (44) and (45) combined with (34) and (35)
represent a general relationship which allows the estimation
of the peak and time to peak of the IUH of a watershed.

3. The dimensionless ratio IR is a characteristic variable
constant for each basin which is independent of the storm
characteristics and which is intimately linked to the geo-
morphology of the watershed and to its hydrologic response
structure.
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