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Use of gamma distributions of stream holding times, rather than the traditional exponential
distributions, results in geomorphologic instantaneous unit hydrographs (GIUHs) that better fit
data-based 1UHs. In this paper, hillslope effects are incorporated into the gamma GI1UH (GGIUH)
model by assuming that the hillslope travel distance in an area of a given order is approximated by the
inverse of twice the local drainage density and introducing 2 hillslope velocity term. A method of
moments fitting procedure is developed to estimate the channel and hillslope velocity terms in the
GGIUH model from the moments of rainfall input and basin discharge output. It was found that
hillslope velocities are 2 orders of magnitude smaller than channel velocities. The values found for the
latter are reasonable given the range of values given in the literature for channel velocities. Similarly,
the hillslope velocity term found by the method of moments procedure matches macropore velocities

reported in the literature.

INTRODUCTION

Some recent developments in rainfall-runoff modeling
show great promise in furthering the engineering and scien-
tific goals of hydrologists. These developments include the
incorporation of basin geomorphology into the river basin
response function [Boyd, 1978; Rodriguez-Iturbe and
Valdes, 1979; Gupta et al., 1980; Troutman and Karlinger,
1985]. These models have the common feature of being
relatively parsimonious in their data requirements. All the
necessary geomorphological data can be obtained from
topographic maps or from digital elevation model data. This
paper presents a method of moments approach for consid-
ering and estimating separate velocity terms for the hillslope
and for the channel components of the travel time in the
geomorphological instantaneous unit hydrograph (GIUH)
with gamma distributed stream lengths.

GEOMORPHOLOGIC INSTANTANEOUS UNIT HYDROGRAPH

In the last two decades, linear system theory has been the
subject of considerable attention in rainfall-runoff modeling
efforts [Dooge, 1973]. This theory holds that catchment
response to a rainfall input is linear and time invariant
[Gupta et al., 1980]. Under this assumption, for a given
effective rainfall intensity, i(7), the key problem faced by the
hydrologist is the determination of the instantaneous unit
hydrograph (IUH). The output of the basin (g(1): discharge at
time ¢ per unit area) is then given by the convolution integral
of the IUH, h(r), with the input:

q(n = f " {oWhte - 1) dr (1)
0
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Rodriguez-Iturbe and Valdes [1979] developed a probabi-
listic model relating the basin’s characteristic response func-
tion, the IUH, to its geomorphology. Assuming a Strahler
stream ordering system, the geomorphologic description of
the basin is given by Horton’s laws of stream numbers and
streams lengths, and by Schumm’s law of stream areas
[Horton, 1945; Strahler, 1952; Schumm, 1956; Smart, 1972].

The GIUH developed by Rodriguez-Iturbe and Valdes
[1979] was generalized for basins of any order by Gupta et
al. [1980]. The latter development is summarized here.
These authors showed that the GIUH of a basin is equal to
the probability density function (pdf) of travel time to the
catchment outlet, T, of a water drop falling randomly on the
basin during a storm of uniform spatial distribution:

d d
hD)=—P(Ty<t=—| X P(T;<0P(s) @
dt SES

where § is the ensemble of all paths to the basin outlet, P(s)
is the probability of occurrence of path s, and T is the travel
time in a path s. Expressed differently, the GIUH is the pdf
of travel time along all possible paths to the basin outlet.

The probability P(s) of following any given path to the
outlet, in a basin of order , is just the probability of starting
out in the appropriate area of order i, times the probabilities
of making each transition to streams of higher order along
that path:

P(s) = 6; X Py X Py X+ ++X Py (3)

where 8; is referred to as the initial state probability. It is the
probability of a random raindrop falling on areas contribut-
ing directly to streams of order i. Py is called the transition
probability. It is the probability of a water drop going from a
stream of order i to on¢ of order j. The above probabilities
can be shown to be strictly a function of the topology of the
river basin. Gupta et al. [1980] give expressions that in an
ensemble average sense yield the probabilities 6; and P, in
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terms of the Horton’s bifurcation and area ratios. However,
in the appendix it is shown that in practice it is preferable to
use actual data to derive 6; and Py because the assumptions
underlying the Gupta et al. [1980] equations are violated in
river basins.

The travel time in a path s, T, is the sum of travel times
in each element of that path:

Ts — a(w) -+ T,(w) +ee-4 T,(n) (4)

where T,(w) is the travel time in a stream of order e{wel[l,
-+, 1]). In the works by Rodriguez-Iturbe and Valdes [1979]
and Gupta et al. [1980], it was assumed that the travel time
from the hillslope to the stream is negligible (T, = 0). In
the work presented in this paper, a framework is provided
for incorporating nonnegligible travel times associated with
hillslope effects into the GIUH.

Given that there are many streams of order w, T,(,,) can be
considered an independent random variable with a given
probability density function (pdf), f7(z). Thus from (2) the
GIUH is given by the convolution of the individual pdfs,
Sf7(1), for each order win a given path s, times the probability
of that path, P(s), summed over all paths to the outlet:

d
h(e) =~ P(T,<1) = 2 [FE@ = = fROIPGs) (5

SES

where the asterisk is used to denote the convolution opera-
tion.

The distribution of travel times in streams of any given
order w, ff(f), has been frequently assumed to be exponen-
tial with parameter A, = V/L,, where L is the mean length
of streams of order w and V is some constant velocity
characteristic of the basin [Rodriguez-Iturbe and Valdes,
1979; Gupta et al., 1980].

Results from our analysis of stream and link lengths of
simulated tree networks [van der Tak, 1988] and from three
digitized channel networks suggest that a gamma pdf with
shape parameter *‘a’’ of about 1.2 to 3.1 is more appropriate.
These results corroborate those found by Shreve [1969],
Krumbein and Shreve [1970] and Smart [1978], who suggest
that a gamma shape parameter of 2 is suitable for the
distribution of interior link lengths and a higher value is
appropriate for exterior link lengths.

The gamma pdf is given by

an(n - l)e—bL

Sap(L) = i (6)

where L is length, a is the shape parameter and b the scale
parameter related through the mean by L = a/b, and I'(a) is
the gamma function. The variance of the gamma pdf is of =
alb*.

It is easily shown that the pdfs of travel time have the
same shape parameter as the pdfs of stream lengths by
converting stream lengths to travel times by dividing through
by a characteristic velocity V. However, the scale parame-
ters of these gamma pdfs of travel time are given by V X b/,
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Given a complete Horton-Strahler analysis of the geomor-
phological characteristics of the basin, and hence the initial
state and transition probabilities, 6, and P, respectively,
the only remaining parameters needed to determine the
GIUH assuming a gamma distribution of stream travel times
are the gamma shape parameters and the velocity. This
version of the GIUH is hereinafter referred to as the GGIUH
(gamma GIUH), whereas the version using exponentially
distributed travel times is simply denoted GIUH.

van der Tak [1988] presents a detailed comparison of the
GIUH and the GGIUH models, arguing for the preference of
the latter. Figures la and 1o show the GIUH and GGIUH
models for three different velocities, compared to IUHs
derived by numerical deconvolution of rainfall-runoff data
collected from two storm events in a channel network of
Strahler order 5 in the 447 km? Souhegan River watershed in
New Hampshire. The best fit of the peak @, and time to peak
T, is given in both cases by V = 0.292 m/s. However, the
GGIUH (Figure 1b) provides a better match of the rising
limb of the derived IUHs, particularly at very early times
where the GIUH rises too quickly (Figure la). Even though
the timing of the GIUH and GGIUH would corroborate the
better fit obtained with the GGIUH model, Figures 1a and 15
show that selection of the velocity term is more important
than the selection of the distribution of stream lengths.

Hillslope Effects and the Two Velocity
Gamma GIUH

One might be tempted to assign a physical significance to
the value of the velocity term V discussed previously by
fitting the peak, Q,, and the time to peak, T,, of the GIUH
and GGIUH models to those of the derived IUHs. This value
of V incorporates both the hillslope and channel flow com-
ponents of a water drop’s path to the basin outlet because it
reflects the basin’s overall holding time as determined from
the rainfall-runoff event data. Based on Pilgrim’s [1977]
study, Rodriguez-Iturbe and Valdes [1979] postulated a
constant characteristic velocity for the basin. Nordin and
Sabol [1974] reviewed 51 time-of-travel tracer studies done
by the U.S. Geological Survey and others on rivers with
flows ranging from 17 to 34,000 cfs. In approximately half of
these cases, convective velocities remained constant moving
downstream; in a quarter the velocities tended to decrease in
the downstream direction; and in the remainder, velocities
either increased or no pattern was recognized. Given these
observations it is important to point out that the GIUH and
GGIUH models allow V to vary with stream order. A
different V* can be used for each gamma pdf parameter 5¢
in (7).

Rodriguez-Iturbe and Valdes [1979] ignored the hillslope
component of overall travel time and argued that the holding
time in the hillslope component of a water drop's path to the
basin outlet is insignificant relative to the holding time in
streams. They reasoned that the number of drops in a given
stream segment which is derived directly from the adjacent
hillslope is small compared to the number of drops from

where b{ is the scale parameter of the gamma pdf of stream
lengths of order w. Thus given a mean stream length for
streams of order w equal to L, = a“/bf’ and an assumed
gamma shape parameter a®, the scale parameter of f7(?) is

upstream tributaries to the stream. One might infer from this
that the relative lengths of streams versus hillslope in a water
drop’s path is taken as evidence of the insignificance of the
hillslope contribution to overall travel time. However, such
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Comparison of exponential and gamma GIUH fits to derived IUHs at different velocities: (a) comparison of

exponential pdfs with different velocities V with IUHs for the Souhegan, and (b) comparison of gamma pdfs with shape
parameter 2 and different velocities V with IlUHs for the Souhegan.

an argument assumes that hillslope and channel velocities
are of the same order of magnitude. This is a tenuous
assumption,

We incorporate a hillslope velocity term V, into the
GGIUH in the following manner. A zeroth order stream of
mean length equal to one half the inverse of the local
drainage density [Horron, 1945] is included with a smaller
velocity term (V, < V,) reflecting the different hillslope
mechanisms governing flow to channels. These mechanisms,
saturated overland flow, variable source areas, Hortonian
overland flow, throughflow, and others, are beyond the
scope of this work. Within the above framework the gamma
scale parameter for the hillslope component in areas of a
given order is given by

by = Vya“IL, = V,a*2D, ®)

where D, is local drainage density given by
gy :
D,=— 2, LL/DAL )
=)

where L. and DA/ are the length and area contributing
directly to stream i of order w. Substituting V. for V in (7)
gives the gamma pdf scale parameter for the channel com-
ponent. The two velocity GGIUH incorporating hillslope
holding times is hereinafter designated 2VGGIUH.

Figures 2a and 2b show the effect of varying either the
hillslope velocity, V,, or the channel velocity, V., while the
other term is held constant. The results are compared to a
numerically derived IUH corresponding to the July 2, 1987,
storm over the Souhegan River basin. Also shown is the best
fit of the GGIUH with no hillslope component. The neces-
sary aggregate ‘‘channel’’ velocity in that case is 0.292 m/s.
Comparing Figures 2a and 2b, it appears that the 2VGGIUH

model is more sensitive to the value of V,, than that of V_. A
doubling or quadrupling of the hillslope velocity V,, produces
roughly twice the change in the peak of the 2VGGIUH, Q,,
than is seen for an equivalent relative increase in the channel
velocity V..

The primary effect of incorporating the hillslope velocity
into the GGIUH theory is to introduce a lag in the basin
response. This is apparent in Figures 2a and 2b in which the
one velocity GGIUH is seen to rise immediately from time
zero while the 2VGGIUHs are not significantly different
from zero until after about 5 hours. This lag is also apparent
in the streamflow data-based IUH. As a result of this lag, the
channel velocity term yielding a satisfactory fit to the de-
rived IUH is considerably larger than that used in the one
velocity GGIUH (compare the plots with V,, = 0.0033 m/s
and V. = 0.75 or 1.5 m/s in Figure 2b to the plot of the one
velocity GGIUH with V = 0.29 m/s). The channel and
hillslope velocities corresponding to the 2VGGIUH are
reasonable given the range of values reported in the litera-
ture [Nordin and Sabol, 1974; Beven and Germann, 1982].
Rough measurements of V. in the Souhegan gave values of
about 0.6 m/s [Wyss, 1988].

In all of the 2VGGIUHs shown in Figure 2, distances
traveled along the hillslope to the stream were assumed to be
gamma distributed with shape parameter a of 2, just as we
assumed for the distribution of stream lengths. However,
there is no reason to believe that travel distances to streams
exhibit the same probabilistic features as do stream lengths.
Wyss [1988] found that horizontal distances to streams from
grid points on a 25 X 25 m grid in the Souhegan were well
represented by an exponential distribution. This assumption
has a nonnegligible impact on the shape of the 2VGGIUH
[van der Tak, 1988].
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Fig. 2. The effect of varying hillslope or channel velocities in GGIUH models with reference to one velocity
GGIUH and derived IUH. (a) Variable hillslope velocity. Gamma distribution of hillslope travel times. (b) Variable
channel velocity. Gamma distribution of hillslope travel times.

Method of Moments Fits of the Two Velocity
Gamma GIUH

Linear systems theory can be used to estimate moments of
a river basin’s response function. Dooge [1973] showed that
the mean, p,,, and variance, o, of the IUH are given by

Bh= g Ri (10a)
ot=02-a} (10b)

where p, and o, q, and p; and o} are the mean and variance
of the discharge hydrograph and rainfall input, normalized to
unit volume, respectively. Table 1 gives the moments of the
normalized data from rainfall-runoff event on July 2, 1987, in
the Souhegan and the estimated moments of the basin IUH.

The estimated moments of the basin response function
given in Table 1 were used in conjunction with the moments
of the 2VGGIUH of the Souhegan to derive V}, and V, using
a least squares approach. In order to accomplish this the
functional relationship between the moments of the
2VGGIUH and the velocity parameters, V; and V., had to
be determined. The mean and variance of the 2VGGIUH
were computed for a range of values of Vj, and V, for both

TABLE 1. Mean and Variance of Normalized Rainfall and
Runoff From the July 2, 1987, Storm in the Souhegan, and
Estimated Moments of the Basin Response Function
From Equations (10a) and (106)

the case where hillslope holding times are assumed to be
exponential and that where they are assumed to be gamma
with shape parameter 2. The relationships between the
moments of the 2VGGIUH and V, and V, were found to be
bivariate hyperbolic functions that are distinct depending on
the assumptions for the distribution of hillslope holding
times [van der Tak, 1988). An equation of the form

f=Av,°+BV.® (11)

was fit to the observed moments, where ¥ is the hyperbolic
model estimate of the mean or the variance. The coefficients
A, B, a and b were determined by minimizing the square of
deviations. Because of the nonlinearity of this minimization
problem, a good first estimate of the coefficients is required
Based on dimensional considerations, the exponents ‘“‘a
and “'b”’ were initially taken as 1 for the mean and 2 for the
variance, respectively. Using these guesses, two sets of
moment data were taken from each of the computed hyper-
bolic surfaces in order to estimate A and B. The resulting
least squares hyperbolic fits for the case of exponential
hillslope holding times are as follows:

fr=0211V, %% + 11.52v 1% (12a)

a2 =0.126V;, "% + 36.15v > (12b)

The reasonableness of these equations is corroborated by
Figures 3a and 3b. This shows the moments variation of the
2VGGIUH as a function of the hillslope velocity V, for three
different values of the channel velocity V., compared to the

Mean, hours Variance, hours”  ahove hyperbolic equations for exponential hillslope holding
“ 52.93 times. The least squares hyperbolic equations fitted to the
.uf 5.21 moments of the 2VGGIUH with gamma hillslope holding
B - 172 times are as follows:

2

% 538.95 fn =0.1224V; 0% + 12,38V (13a)
o] 6.05
% RN 67 =0.011v; " + 4673V, 21 (13)
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The above gave values indistinguishable from the actual
moments computed for the 2VGGIUH.

Using the above two sets of hyperbolic equations and the
linear systems estimates for the moments of the basin
response function ((10a) and (105) and Table 1), we obtained
least squares estimates of the hillslope and channel velocity
terms.

The 2VGGIUH obtained by using the least squares esti-
mates of V, and V. are shown in Figure 4a for both the case
of exponential and gamma hillslope holding times. The
difference in the values of V;, and V, for the two cases is
significant even though the 2VGGIUHSs are not significantly
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different. Interestingly, the assumption of exponential hill-
slope pdfs yields a higher hillslope velocity than the gamma
assumption while the channel velocity is only about 0.1 m/s
larger than the best fit one velocity GGIUH value of V =
0.29 m/s. In contrast, the channel velocity, V.., obtained for
the gamma hillslope assumption is closer to the rough field
estimates of V. =~ 0.6 m/s we have already mentioned [Wyss,
1988]. Obviously, the question of the appropriate parameter-
ization of the distribution of hillslope holding times remains
unresolved at this juncture.

In Figure 4b the actual moments of the data-based IUH of
the July 2, 1987, storm were computed and used to fit V), and

lhl Least squares fit to
nis of the derived IUH
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Fig. 4. Least squares fit of the 2VGGIUH for the exponential (1) and gamma (2) hillslope length pdfs to one storm
in the Souhegan basin. (a) The results from fitting the moments resulting from rainfall-discharge analysis. (5) The results
from directly fitting the moments of the IUH derived from the data via numerical deconvolution.
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V., rather than using (10a) and (10b). Although improvement
in the overall fit is seen, the estimate of the time to peak, 7,,
is still about 10-20 hours behind the derived IUH, and the
peak Q,, is slightly overestimated.

SUuMMARY AND CONCLUSION

Hillslope effects were incorporated into the GGIUH the-
ory by assuming that the hillslope travel distance in an area
of a given order is given on average by the inverse of twice
the local drainage density and that velocities in the hillslope
component of travel time are different than in channels. We
presented a method of moments approach for estimating the
hillslope and channel velocity parameters, V;, and V_, from
the moments of actual storm data. The resulting channel
velocities are larger and more reasonable than those found
by fitting the peak and time to peak of the derived IUH with
the one velocity GIUH. The hillslope velocities were 2
orders of magnitude smaller than the channel velocities,
which is in agreement with velocities reported in the litera-
ture for hillslope macropore flow mechanisms. Inclusion of
the hillslope effects has a distinct effect on the shape of
GGIUH by introducing a lag in the basin response function
which more nearly approximates the behavior seen in the
rising limb of derived IUHs and in actual hydrographs.

An unresolved issue resulting from our extensions of the
GIUH theory includes the question of the appropriate pa-
rameterization of the holding times of the hillslope compo-
nent of total travel time to the basin outlet. Are they
exponentially distributed as suggested by Wyss [1988]? Or
are they gamma distributed as is suggested by the relative
values of the channel velocity terms resulting from the
method of moments fits for the exponential and gamma pdf
hillslope holding time assumptions used in this work?

APPENDIX: DETERMINING INITIAL STATE AND
TRANSITION PROBABILITIES FOR THE GIUH

Gupta et al. [1980] gave equations for estimating the initial
state probabilities, 6;, and the transition probabilities ap-
pearing in (3). The accuracy and assumptions of these
formulas are the subject of this appendix.

Notes on the Initial State Probability Formula
Given by Gupta et al. [1980]

Assuming a uniform rainfall over the watershed, the initial
state probability 6, is determined exactly as the ratio of the
total area draining directly into streams of order w, DA, to
the total area of the basin Ag:

] NDA,
@ Aﬂ

(A1)

where DA, is the mean are draining directly into order
streams, N, is the number of streams of order w, and Ag is
the total area of the basin.

relationship to approximate 6, in a basin of order ):

o N\A, (A2a)
1 Aa

VAN DER TAK AND BRAS: HILLSLOPE EFFECTS IN INSTANTANEOUS UNIT HYDROGRAPH

®=1
0y=— Iu- z A-j{Nija,Na)
i=1
W= 2’ e, n

where 4, = (1/N,) £ A,, is the average area contributing
to a stream of order w and its tributaries, and A, is the area
contributing to the ith stream of order @ and its tributaries.

There is no ambiguity in defining 8; by (A2a) above since
the total area contributing directly to streams of order 1
(DA,) is exactly N, A,. However, (A2b) above, for the initial
state probability of orders 2 through (2, is slightly inaccurate.
This inaccuracy is particularly disturbing in some cases
where 8, is found to be negative.

Equation (A2b) is better understood when rewritten in the
form

w=1
N,A,- 2 N;A;P;,
i=1

(A3)

6,=—

"

w=2+,0

For this to be exact, the term in parentheses would have to
be the exact area contributing directly to streams of order w.
Thus from the total cumulative area (N ,A,) we must sub-
tract that proportion of the cumulative area contributing to
order j streams (j < ) which drains into order o streams. In
other words, we subtract the area contributing to tributaries
of order « streams. To find the proportion of the area of
order j streams which drains into order w streams, hereinaf-
ter referred to as the tributary area, (A3) uses the transition
probability P;,. The transition probability P;, is defined as
the number of order j streams draining into order w streams
divided by the total number of order j streams. The inaccu-
racy in (A3) arises from assuming that the area contributing
to order j streams is uniformly distributed between different
types of stream drainage paths. To illustrate the point, in an
order 4 network, the area per order 2 streams which are
tributaries to order 4 streams is probably smaller than the
area per order 2 streams that flow into order 3 streams and
then to order 4 streams. This is so since the 2 to 4 pathways
are probably interior to the 2 — 3 — 4 pathways in the basin
network. This is commonly observed in natural catchments.

Van der Tak [1988] illustrated the above point further by
example, using simulated channel networks. In summary,
the fundamental problem with applying (A2a) and (A2b) to a
particular basin is that they incorrectly assume that the area
drained by streams of order j is uniformly distributed be-
tween different drainage paths: j—i,i=j + 1, ---, (), where
i and j refer to Strahler stream orders in the order () basin.

Notes on the Transition Probability Formula
Given by Gupta et al. [1980]

- —Gupta et al. [1980] present the following useful recursive  he transition probability from Strahler order j streamsto

streams of order w is, as was previously stated, the number
of order j streams draining into order w streams divided by
the total number of order j streams. Gupta et al. [1980]
calculated P;,, with the following approximate relationship:
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_ (N;=2Nj+ 1) Elw, ) ol 2N+
o Nj
Ny 2 Ek Q)

k=j+1

Jo 6_,' + l,@' (A4)

Isj<e=0

where §; ;. | , = lforew=j+1, §;,, , = 0otherwise; and
E(i,Q)) is the mean number of links of order / in a basin of

order {}, given by [Smart, 1972]

EG, Q) =N; [l V-, -1yeN;-1)  i=2,--
i=2

)

(A5)

Equation (A4) contains assumptions which when applied
to actual basins can lead to inaccuracies. The second term in
expression (A4) is unambiguous. It accounts for those
streams which combine to make a higher-order Strahler
stream when @ = j + 1. Recall that in the Strahler stream
ordering scheme, when two streams of the same order come
together the resulting channel downstream has a higher
order. Thus in (A4) the proportion of streams of order j
which do not combine to form higher-order streams is given
by (N; = 2N; + 1)/N;. Pj, is then estimated as the product of
this proportion of N; streams with the estimated relative
number of links of order w in links downstream of order j
streams, given by E(w, ﬂ)l}:{‘.jﬂ E(k, Q). This assumption
can lead to errors for two reasons. The primary reason is that
it assumes, analogous to the assumptions for 6, given by
(A2b), that stream transitions from streams of order j to
streams of order i are uniformly distributed between dif-
ferent drainage pathways j — i, i = j + 1, «-+, ), in direct
proportion to the number of streams of each orderj and i. A
simple example serves to illustrate the inaccuracy of (A4).

Two hypothetical basins of order 3 with identical stream
numbers but different drainage patterns are shown in Figure
Al. Basin 1 has uniformly distributed stream drainages of
order 1 (for those that do not create higher-order streams at
their downstream confluence, hereinafter referred to as
tributary-source, TS, links, following Mock [1971]), while
basin 2 has all TS links draining into order 3 streams. The
following table can be readily deduced for these basins.

Following the rationale for (A4), the following values of
P,; are computed, using the actual link numbers given in
Table Al.

BASIN 1

Fig. Al. Two basins with identical stream numbers but with
different drainages of tributary-source links. Orders of links are
indicated.
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TABLE Al. Stream and Link Numbers for Basins 1 and 2 in
Figure Al
Link Numbers
Order Stream Numbers Basin 1 Basin 2
1 7 7 7
2 2 4 2
3 1 2 4

Basin 1 Pj(actual) =4  P; (equation (Ad)) =3 x

i=1
Basin 2 Pjj(actual) =3  P|3 (equation (Ad)) =3 x$=12

The rationale behind (A4) is seen to work for basin 1
where drainages of TS links are uniformly distributed be-
tween all streams of higher order, but it breaks down for
basin 2 where the distribution is not uniform. This simple
example shows that while (A4) does give a reasonable
approximation to Pj,, it is a potential source of inaccuracy in
the description of basin topology.

A further potential source of inaccuracy in (A4) results
from the approximation inherent in the expression for E(i,
Q). This expression, discussed at length by Smart [1972],
rests on the assumption of random topology in basin struc-
ture. The primary assumption is that of the independence of
link lengths of different orders. This assumption seems
questionable in practice. The expression for E(i, {}) was
found to be an inconsistent approximation of reality in
several cases of actual and simulated basins, with deviations
most often appearing for the highest order streams [van der
Tak, 1988]. In the example given above, for the stream
numbers in Table Al we find E(2, 3) = 2 and E(3, 3) = 0.

In recent empirical studies by M. N. Allam and K. S.
Balkhair (A geomorphologically-based runoff prediction
model: Case study of two gauged watersheds in Saudi
Arabia, unpublished manuscript, 1987) on geomorphologi-
cally based rainfall-runoff models, inaccuracies in 8, and P,
values of the sort described here were found when applying
(A2) and (A4) to actual basins in Saudi Arabia. Given the
relative case of finding the exact values of these parameters
with computer processing of digital cartographic data, it
seems advisable for most practical applications to avoid
using the approximations given by (A2) and (A4) in favor of
measured values. This is particularly recommended in the
case of channel networks exhibiting large deviations from
random topology due, for instance, to geologic controls, in
which case the assumptions of these equations are more
severely violated. In the case of a relatively well-behaved
channel network, such as the Souhegan River basin in
southern New Hampshire, (A2) and (A4) can be adopted
with insignificant effect on the shape of the GIUH.
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