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. An understa~din~ ?f the downstream. propagation of sharp- fronted, large-amplitude waves of rela-
tively shor~ period IS Important for describing rapidly varying flows in tailwaters of hydroelectric plants
and fO,Howmgthe. breach of a dam. We developed a numerical model of these waves by first identifying
the primary physical processes an~ then performing an analysis of the solution. A linear analysis of the
dynaIT.tlc o~n ~ha~nel flow equa.u0ns .provid~s relationships describing flow wave advection, diffusion,
a.nd dlsperslo~ In rivers. A one-dimensional diffusion wave model modified for application to tail waters
Simulates the Important physi~al ~ro~sse~ and is straightforward to apply. The "modified equation" and
von .~eumann. a~aly.ses provl~e insight mto the effects of numerical parameters e, Ax, and ~t upon
stability and dlsslpat~ve and dispersive behavior of the solution, but the Hirt analysis is found to yield
I~cor~ect phas: relatlOn~hips. The capability and accuracy of the model are enhanced when physical
diffusion of a river wave ISbalanced by numerical diffusion in the model. Field studies were conducted in
two greatly di~erent. tail waters to assess our understanding of large-scale, rapidly varying flow waves.
The accurate Simulation of waves having wide-ranging amplitudes, shapes, periods, and base flows attests
to t~e soundness of .bot~ the physical b~sis of the model and the numerical solution technique. These
~tudles reveal that diffusion of short-period waves in natural, free-flowing rivers is significant and that
inertia is negligible.

INTRODUCTION

Current concerns regarding energy resources have renewed
interest in hydroelectric power generation, particularly for
meeting peak power demands. Peak power generation with
hydropower creates flow regimes in tail water rivers charac-
terized by high and low flows, with abrupt flow and stage
transitions between these states. Because of these abnor-
mal flow conditions, water temperature and quality in tailwa-
rers are modified from those occurring naturally in the stream.
Lengthy periods of zero flow resulting from low power
demand or water availability affect the ability of a tailwater to
~ai~tain a viable aquatic ecosystem. Sharp stage transitions
In wmter can disrupt a stable ice cover, inducing ice jamming
and frazil ice generation. Therefore, an accurate description of
t~e rapidly varying flow regime is important to assess poten-
t~aleffects of peak power generation upon a stream. In addi-
non, understanding these downstream-propagating, sharp-
fronted, large-amplitude flow waves of relatively short period
is important because of similarity to waves following the
breach of a dam.
In this paper we will develop a numerical model to investi-

gate ,the flow regime of a tailwater by first determining the
phYSicalprocesses of primary importance and then analyzing
the numerical solution technique. Analysis of the physical pro-
cesses was undertaken because flow regimes in tail waters are
complex, and general mathematical descriptions are burden-
some and do not necessarily provide the most useful and accu-
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rate model. Though frequently given little attention, analysis
of the numerical solution is critical to understanding model
behavior and thus for optimal. selection of numerical parame-
ters and interpretation of model output.
Analysis of the dynamic open-channel flow equations yields

insight into the physical processes of importance in tail water
flow. The processes of wave advection, diffusion, and disper-
sion in channels are related to terms in the momentum equa-
tion. Presented in nondimensional form, the relative mag-
nitudes of these processes indicate the importance of terms in
the momentum equation and provide physical insights that
guide model selection. This analysis indicates that relatively
short-period waves in rivers are significantly affected by diffu-
sion and that inertia has a small effect upon flow waves at
relatively small Froude numbers in natural channels, contra-
dicting the general belief that inertia is important in rapidly
varying flows. Therefore, we selected and modified the inertia-
free diffusion wave model of Koussis [1976] for application to
tailwater flow.
Exact solutions of the continuity equation that forms the

basis of the diffusion wave model do not exhibit diffusion that
is necessary to simulate wave movement in natural rivers.
Through analysis of the numerical solution, however, it is pos-
sible to compensate for the lack of physical diffusion by quan-
tifying and controlling numerical diffusion. Also, the analysis
of the model guides numerical mesh selection (tn, i\.t) for
optimal accuracy. The analysis of a numerical model is basic
to model development but is frequently limited to the devel-
opment of stability criteria. Numerical stability requires that
errors introduced in the solution do not increase in magnitude
as the computation progresses. Numerical models must be
stable if the solution obtained is to be meaningful. The con-
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ditions required for stability of many numerical schemes are
known, and numerical instability is generally apparent. The
von Neumann and Hirt analyses are frequently used to devel-
op stability criteria [Roache, 1976].

Numerical solutions of the unsteady open channel flow
equations typically exhibit errors in both amplitu,de and ph.ase
that may not be apparent without further analysis, Numencal
dissipation or diffusion causes the Fourier compone~ts of ~he
solution and the errors to be damped. Numerical dispersion
results when the modeled wave celerity of some wavelength
components differ from those of the governing equation, im-
properly modifying the wave form as the computation pro-
ceeds. The effects of numerical dissipation and dispersion
upon the solution are subtle but gradually destroy the corre-
spondence between model and prototype. An improved under-
standing of the dissipative and dispersive behavior of the nu-
merical model enables the analyst to minimize or exploit these
effects to enhance model accuracy and to better interpret com-
puted results.

Though only strictly applicable to linear equations, the
"modified equation" [Warming and Hyeu, 1974J, Hirt and
von Neumann analyses are used to relate the dissipative and
dispersive behavior of the model to parameters of the numeri-
cal solution. A set of linear routings is used to demonstrate the
model behavior predicted with the analysis and to verify the
adequacy of an expression for numerical diffusion developed
in the modified equation analysis.

We compare model simulations with extensive field data
from a number of large-amplitude, sharp-fronted waves in the
Apalachia and Norris Dam tail waters that have very different
bed slope and roughness characteristics. The accuracy
achieved with the model in these field applications verifies its
generality for rapidly varying river flow and reinforces the
utility of both the analysis of the dynamic equations and the
analysis of numerical solution behavior. The field applications
demonstrate the importance of flow wave diffusion and the
dominance of friction over inertia in rivers.

PHYSICAL BASIS FOR MODEL DEVEWPMENT

The development of a mathematical statement describing
important unsteady flow processes in a specific case relies
upon a clear physical understanding. In this section we will
develop a framework for obtaining insights into flow wave
movement in open channels from the one-dimensional dynam-
ic equations. The dynamic equations of flow in open channels
(St. Venant equations) are the commonly used statements of
conservation of mass and momentum balance when the lon-
gitude is the important spatial dimension. Flow in unstratified
Or weakly strat.ified reservoirs and in rivers having a signifi-
cant base flow IS generaU~ modeled. by using these equations;
however, standard numerical solutions fail if the flow depth
approaches zero. This condition is common in tailwaters of
dams used to generate peak power, motivating the search for
an alternate mathematical statement. If the local and advec-
tive inert~a terms ?f the momentum equation are neglected,
the resulting equations can be solved without difficulty as the
flow depth becomes small. However, Cunge et al. [1980] cau-
tion that routing .methods based upon inertia-free equationsn:ay not be applicable in situations where rapid stage and
discharge vanauons occur, such as in tailwaters.

The dynamic equations for a free-flowing river with a id
• . WI e

prismatic rectangular channel and no local inflow are

ay 1 aQ
-+--=0at B ax

(2)

where t is time (s), x is distance along the channel (m), y is flow
depth (m), Q is discharge (m3/s), B is channel width (m), 9 is
acceleration due to gravity (rn/s''), So is the slope of the
channel bottom .. and C is the Chezy conveyance coefficient
(ml/'/s). If the coefficients of (1) and (2) are assumed constant
at appropriate reference values, the equations can be com-
bined and expressed in terms of a single dependent variable
yielding

aQ [3Q] aQ [Q
3
- 9B'y3Q] a'Q [ Q' ] a'Q

at + 2By ax + 2gB3y3So ax' + gB'lso axot

+ [_Q_] a'Q _ 0
2gBySo at' ~ (3)

a hyperbolic equation. Equation (3) can be manipulated fur-
ther to eliminate the second-order mixed and temporal deriva-
tives

aQ aQ o'Q a3Q- + c - ~ D - + E - + (higher-order terms)
at ax ax' ax3

3Q dQ
c~--=-

2By dA

D=~(I- F'14)
2BSo

E = Q' D = F' -.L D
2gB'y'So 2So

(4)

(I)

where c is wave celerity, A the channel cross-sectional area,
and F the Froude number V1.j{iY. If second- and higher-order
terms in (4) are neglected, the kinematic wave equation, free of
physically based diffusion, is obtained. When third- and
higher-order terms are neglected, (4) contains positive physical
diffusion, and describes a diffusion wave.

The wave celerity given in (4) is that of a kinematic wave
and is a consequence of the importance of friction in river
flow. The kinematic wave celerity is ty~ally much slower
than the dynamic wave celerity V + .jgy, important when
friction is small in relation to inertia. Tracing through the
development 0[(4) reveals that the source of the diffusion term
is primarily the water surface slope term of the momentum
equation. The dependence of the diffusion coefficient D upo»
the Froude number results from including the inertia terms In
the development. The dispersion coefficient E, given in (4),
varies linearly with the magnitude of the diffusion coeffiCient
and quadratically with the Froude number. The existence of
the dispersion term and the higher-order terms follow from
the inertia terms. When the Froude number is significantly
less than I, (4) simplifies to the advective diffusion equation
developed by Cunge [1969], neglecting inertia.

The opposing tendencies of wave diffusion and wave
steepening due to nonlinear advection are combined in (4).
Whitham [1974] studied the wave front separating steady flow
domains with a simplified form of (4) having constant D and
exclUding terms higher than second order. He found that a
steady transition profile evolves and remains continuous when
d~ffusion is present that has a length proportional to the m~~·
mtude of D, The magnitude of D approaches zero for smoo ,
steep channels, which therefore are good candidates for shock
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rormationand successful application of the kinematic wave
equation.
With reference discharge Qo and spatial and temporal in-

crements/).X and .1.t, (4) is rewritten in dimensionless form in
termsofQ' = Q/Qo, x· = x/6x, and t' = t/61 as

aQ' oQ' o'Q' oJQ'_ + C, -;-; = D* C, 0 *2 + E* D* C, --J
at* ox x ax*

+ (higher-order terms)

C = c6t
, 6x

D
D*=--

c6x

E* - Q' - F'( y )
- 2gB'y'So6x - 2So6x

whereC, is the Courant number, D* a dimensionless diffusion
coefficient,and E* a dimensionless dispersion coefficient. The
magnitudeof .1.x selected should provide adequate resolution
ofthe features of the shortest wavelength of interest.
The magnitude of D* relative to 1 is a measure of the im-

portanceof diffusion relative to advection. When this quantity
is significantly less than I, advection is dominant over diffu-
sion.The magnitude of E* relative to 1 measures the impor-
tanceof dispersion relative to diffusion. As E* is proportional
t? the square of the Froude number, its magnitude for natural
nver~is generally much less than 1, revealing that the flow is
dominated by friction and essentially independent of inertia.
The.validity of using inertia-free methods for rapidly vary-

mg tatlwater flow can be investigated further with the frame-
work provided by the linear small perturbation analyses of .
Ponce and Simons [1977], Ponce et 01. [1978], and Menendez
and Norseini [1982] and the order-of-magnitude analysis of
Henderson [1963]. The results of Ponce et a1. can be readily
usedto ... h .. . gam mstg t mto attenuation and propagation charac-
tens~lCsof the inertia-free models relative to those of the dy-
namicmodel. For a range of channel and flow parameters
char t . . .ac ens tic of tailwaters, attenuation and propagation
errors resulting from neglecting inertia appear small. Hender-
son compared terms of the momentum equation for a wide
rectangular channel and found that the inertia terms were of
the same order of magnitude and were related to the water
surfaceslope term as

inertia term 2
oy/ox = O(F ) (6)

Th IS result supports the relationship between inertia and the
square of th F d ..e rou e number given In (4). Henderson also
~ompared the water surface and bottom slope terms obtain-
lng ,

oy/ox oq/ot--oc~~~
So q213 So 513

Whereq is th d·nat e ischarge per unit width. For flood flows in
oftural streams the magnitude of the water surface slope is
i en .small in relation to that of the bottom slope. However,
n tallwate h
oc

rs were sudden large-magnitude flow changes
CUr oqj'pected to ot can be. large, and the water surface slope is ex-

balance mak~ an Important contribution to the momentum
han d' f The Importance of the water surface slope is en-

ce urthe' .Th r 10 rivers ha ving small bottom slopes.
e analyses support the use of an inertia-free model for

(5)

tail water flow and indicate the importance of diffusion re-
s~lting ~rom the water surface slope. The water surface slope is
discontinuous at the toe of a rapidly varying flow wave, and a
number of waves may exist simultaneously in a tailwater, in-
tro?ucing additional modeling complications of accurately 10~
eating each front and evaluating the water surface slope in the
vicinity of a front. The kinematic wave equation neglects the
water surface slope term in addition to the acceleration terms
of the momentum equation, avoiding these complications.
This additional simplification does not permit wave diffusion;
however, numerical solutions of the kinematic wave equation
frequently exhibit diffusion resulting from the solution tech-
nique [Cunge, 1969; Smith, 1980]. If this numerical diffusion is
used to mimic the physical diffusion occurring in the channel,
the inherent model limitation to diffusion-free flows can be
overcome.
As a physically meaningful downstream boundary is not

generally available in tailwaters, models not requiring a down-
stream boundary condition are most readily applied. Solu-
tions of the kinematic wave equation are independent of
downstream influences and do not require a downstream
boundary condition. This model cannot account for the influ-
ence of downstream controls upon the flow, and application
to rivers with long pooled reaches is suspect. However, Smith
[1980] found that a variable weighting factor in tbe numerical
scheme, corresponding to a variable diffusion coefficient, al-
lowed successful application of kinematic wave-based models
to flood routing through flat, ponded reaches. The importance
of backwater effects upon rapidly varying flows found in tail-
waters has not been resolved.

DESCRIPTION OF THE DIFFUSION WAVE FLOW

ROUTiNG MODEL

Our diffusion wave model for flow in tail waters differs from
most kinematic wave routing methods [Weinmann and Lour-
enson, 1979] in that both stage and discharge are computed at
each point in the numerical grid. The conservation of mass
equation is solved numerically for discharge. Exact solutions
of the continuity equation do not exhibit diffusion, which is
necessary to represent important physical processes in tailwa-
ter flows. The numerical solution of this equation, however, is
adjusted in the model to require numerical diffusion to mimic
physical diffusion. The equation for river stage includes a
water surface slope term that generates a looped rating curve
and provides an improved estimate of wave celerity. The equa-
tions are coupled through the wave celerity and must be
solved simultaneously.
The continuity equation for flow in open channels can be

written as
oQ loQ-+--=q.
ox cot'

(7)
dQ dx

c=-=-
dA dt

where qj is local inflow per unit length of the channel. Equa-
tion (7), which forms the basis of the model, is a first-order
hyperbolic equation. This equation type is advantageous for
modeling tailwater flow because a downstream boundary con-
dition need not be specified, but for this same reason, backwa-
ter effects cannot be taken into account.
The "method of lines," in which the spatial derivative is

approximated with a finite difference expression but the de-
pendent variable remains continuous in time, is used to obtain
a solution of (7). The partial differential equation for conser-



(8)

We will assume for simplicity a wide rectangular channel, and
with a finite difference approximation of the time derivative in
(14) the flow depth is

[ ~ J~'Y ~ CmB(So + (Q - Qo)/c2BtJ.t)l/2 (15)
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vation of mass is thereby reduced to an ordinary differential
equation. With the approximations

aQ I
ax ~ !J.x [Qj+ 1(1) - Q;(I))

aQ ~ 0 aQj + (1 _ 0) aQj+ I

ill at al

in which j is an index corresponding to the spatial location
x = jtxx, and 0 is a parameter of the numerical solution, (7) is
rewritten as

where
(c)

a = 7tJ.x"""'(:-1 ------,;-0)

Q is the derivative of discharge with respect to time, and <c) is
an averaged celerity in space and time over the cell of the
computational mesh where the equation is applied. Assuming,
for a small time increment, that the variation of Qj{t) is linear,
that the values of the coefficients can be estimated, and that
the local inflow is constant, the solution of(10) is

Q;+lm+1 =(I-a)Qjm+1 +(a-p)Qt+PQ;+lm

+qtJ.x(I-p) (II)
where

p=exp(~)
1-0

I-P
a=--

C,

C = (c)tJ.t
, tJ.x

The local Courant number of the numerical grid cell C, ex-
presses the ratio of physical to numerical wave celerity, and m
is the temporal index of the computational grid r = m!lt.
Neglecting the inertia of the flow and the momentum con-

tribution of the local inflow, the momentum equation for pris-
matic channels is

ay
--SO+Sf=O
ax

in which Sf is the slope of the energy grade line. Inserting (12)
into Manning's equation yields an expression for the stream
rating curve,

v ~ Cm R213(S _ ay)112
11 0 ax

where R is the hydraulic radius, n is Manning's roughness
coefficient, and em is a Constant that is dependent upon the
system of units. To obtain a relationship that is consistent
with the. down~tre~m-~rogre~singdischarge calculation of (11),
the spatial derivative m (13) IS replaced with a quantity deter-
mined at a pomt. If the energy slope is adequately large argu-
ments from kinematic wave theory can be used, and (1'3) ca
be rewritten in a form of the" Jones formula " as n

v = eM R,.3(So + _1_ OQ) I z
11 c2B at

(9)
The depth corresponding to a given discharge varies de-

pending upon the evaluation of the water surface slope and is
lower during the rising limb of a hydrograph than during the
falling portion of the hydrograph. The accuracy of the depth
calculation using (IS) depends upon the relative magnitudes of
the slope terms. In response to decreasing flow in a river reach
having a small hottom slope the denominator of (IS) may
decrease more quickly than the numerator, causing the calcu-
lated stage to increase. This unphysical result signals the need
for an alternate equation for modeling the flow depth. If the
definition of celerity is approximated as

dQ tJ.Q
c=-~--

dA BtJ.y

then an alternate equation for flow depth is

I
Y ~ Yo + cB (Q - Qo) (16)

The remaining unknown to be determined is wave celerity.
The celerity of a kinematic or diffusion flood wave is related
to the flow velocity hy a multiplier that depends upon the
channel shape and energy slope model used [Henderson,
1963]. The wave celerity of steep-fronted tailwater releases is
also dependent upon the flow depth on either side of the wave
front. In the extreme case of a rapid flow release to a pre-
viously dry channel the celerity of the front must equal the
velocity of the flow immediately behind it. The monoclinal
rising wave is a translatory wave of stable form. If tail water
releases are presumed to be monoclinal waves during passage
through a reach !lx, then an expression for wave celerity can
be obtained. For a wide rectangular channel, with the Chezy
equation used to describe the energy slope, the expression for
wave celerity is

(12)

c; ~ [I- (y;+ tly)312Jfi (17)
1 - (y;+ tlY)

For slowly rising hydrographs, (17) yields the familiar result
for celerity of a flood wave: c = 1.5 V.
The diffusion wave tailwater model is composed of coupled

nonlinear equations that are solved simultaneously. To ad-
vance the computation in time, (II) is solved at each grid
point by using values of Q and c from the previous time ~t~p
to evaluate the coefficients. The calculation for Q is explicit-
progressing in the downstream direction from a known flow at
the upstream boundary and given initial conditions. The
values of flow depth and celerity are then updated with (15)
through (17). A converged solution is reached when computed
flows at Successive iterations agree within a set tolerance at
each location in the numerical grid. In simulations performed
a.t s~all Courant numbers a good initial estimate of the 501u-
~10nIS available from the previous time step, and convergence
15 generally rapid.

(13)

(14)
ANALYSIS OF THE MODEL

The development of a numerical model should include a
thorough analysis of the solution technique. Simulations per-
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formedwith a model assuming different numerical parameter
valueswill generally confirm their pronounced effects upon
modelstability, diffusion, and dispersion, which must be un-
derstoodto obtain accurate solutions that can be readily in-
terpreted.In the diffusion wave model, grid parameters /).X

and 6t and the weigh I parameter 0 must be specified. The
capabilityof the model is enhanced by using 0 to enforce the
balance between physical and numerical diffusion and by
specifyinga numerical grid that adequately resolves the flow
wavesof interest, conserves mass, and minimizes the imbal-
ancebetweenphysical and numerical dispersion.

Modified Equation and Hirt Analyses
The stability, damping, and dispersion characteristics of a

differenceapproximation to a partial differential equation can
beinvestigated with the modified equation analysis of Warm-
ing and Hyett [1974] and with the Hirt analysis. The two
analysesfollow the same basic steps with one important differ-
ence.Neglecting roundoff error, the modified equation repre-
sents the actual partial differential equation solved when a
numericalsolution is obtained from a difference equation. To
obtainthe modified equation for the difference scheme of (11),
~e e~pan~ each term in a Taylor series about Qt· Upon
simplification,the resulting equation is

vQ vQ ctsx o'Q At o'Q cAt o'Q cAx' o'Q
vt + c Ox + -2- ox' +2 Ot' +(I - fJ) OXOI+-6- ox'

+ 6x' 03Q AxAt o'Q At' o'Q (higher-order)
2 " +----+--+ =0
" ox 01 2a OxOl' 6 Ot' terms

Themodified equation has an infinite number of terms. Terms
~ppea.ringin the modified equation but missing from the orig-
maldlffer~ntial equation represent a type of truncation error.
. Properties of a difference scheme can be found by exam-
ml~ga. truncated version of the modified equation. The time
derivativeshigher than first order and the mixed derivatives
are eliminated from (18) to obtain an equation that is amen-
~bleto physical interpretation. Even-order spatial derivatives
10 the recast equation correspond to dissipative effects, and
o:d-order spatial derivatives reveal dispersive properties of
t. e ~ode1. In the Hirt analysis the governing differential equa-
non IS used I . lif .''. 0 SImp I y (18). However, a solution of the orig-
maldIfferent' I . .. ..ra equation WIll not 10 general satisfy the differ-
encee . "(18)' quauon. Therefore, in the modified equation approach,
Th Itself IS differentiated and used in the simplifying process.

D
.~coefficients are assumed to be constant in both analyses.
luerences b I h . .d e ween t e two procedures for the dIffUSIOnwave

~~ el analysis appear in the coefficients of third- and higher-
r er spatial derivatives.
Fallowing th .e modified equation approach, (18) becomes

vQ + c 8Q ~ D o'Q + E 8'Q + (higher-order)
at ax 8x2 8x3 terms

D ~ cAx (2C, _ I _ C )
2 l-fJ '

. [3C (_2) ,( 3 3)J' I _ fJ - 1 -I - 2C, I - I _ fJ + (1- fJ)'

Following Hirt's analysis, the analogous expression for E is

E" = cAt [3C,C ~ p) - I - c,'C ~ p -I)J (20)

The modified equation can be rewritten in the form

OQ 00 O"+IQ 00 8"Qat ~ L 1'(2p+ I) ~ + L 1'(2p) 8 " (21)
p=o ox p=l x

The form of the solution of (21) is

00

a ~ L (-l)'k"1'(2p)
p=l

(22)
00

b ~ L (-l)'k"+ '1'(2p + I)
p=O

where k is the wave number (2,,/wavelength) of tbe solution
component, and i = j"=1.
As waves of large wave number cannot be resolved on a

numerical grid, waves with small wave numbers are of pri-
mary importance. For these waves the exponent a of (22) can
be approximated as

a'" -k'D (23)

(18)

where D is the diffusion coefficient defined in (19). A dimen-
sionless numerical diffusion coefficient D* = Dj(cAx) of the
diffusion wave model is given in Figure I as a function of the
Courant number for various values of e. For Courant num-
bers less than 0.5, damping is not a strong function of the
Courant number. A positive diffusion coefficient in the modi-
fied equation, necessary for a stable numerical solution, is
obtained if either 0 S 0.5 or C, ;0, 1.0 and e < 1.0. Numerical
dissipation increases as e decreases and as C, increases. There-
fore, stability does not restrict either the minimum value of 0
or the maximum value of the Courant number, presenting the
possibilities of allowing negative 8 and large time steps in the
model.
Equation (5), describing wave movement in rivers, has the

same form as (21). Analysis of (5) revealed that flow in natural
rivers is adequately described by including terms through
second order. The Fourier components of the continuum solu-
tion of the resulting advective diffusion equation are Qk exp
[ik(x _ cr) _ Dk't]. Components of all wave numbers are ad-
vected at c, and after an increment of time /).t, all components
have undergone a phase angle change $.: of

<1>, ~ - ekAt = - C,(kAx) = - C,y (24)

In the model, celerity is a function of wave number (22), and
the phase angle change of the numerical solution in time /).t is

00

<1>. = bAt = -ckAt + At L (_l)'k,,+11'(2p + I) (25)
p= 1

The ratio of the numerical to continuum phase shifts yields an
expression for the relative propagation speed of each Fourier
component per time increment

I 00

<1>, = <1>./<1>, = 1 - - L (-l)'k"1'(2p + I) (26)
c p= 1

(19) Values of $ greater than 1 indicate that the numerical solu-
ti~n compo~ent of wave number k will have a celerity greater
than that of the continuum solution, with the converse true for
values of «1>, less than 1. Since small wave numbers are of
primary importance in the numerical solution, (26) can be
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approximated as

<I> = I + k'I,(3j + O(y4) _ J +t [3C (_2_ -I) - J
, c - 6 'l-P

- 2C, '( 1 - I ~ P + (I ~ p)')] (27)

Equation (27) is plotted as a function of the Courant
number for selected values of 0 in Figures 2-4 for wavelengths
of 24 <lx, 12 <lx, and Mx, respectively. At these wavelengths
the phase angle of the numerical solution predominantly lags
that of the continuum solution. The discrepancy is largest for
the shorter wavelengths, smaller values of 0, and larger values

2.0

0*

Unstable

1.6

1.2

0.8 o

0.4
0.5

0.9

Stable
01--=----- ----

-0.4O~-L_~--Jl--J
1.0 20
Cr

Fig. L Dlmens.IOnless numerical diff .
or Courant number for various values f the coefficient as a function
the modified equation analysis. 0 e parameter 0 based upon

--__ e=0.5
--- 0---- ...."-05.....0 '

----- ----0,8 - .... }-1.0

-Modified Equation
-- von Neumann
y= JL

12

0.4

o 2
Cr

Fig. 2. Ratio of numerical to continuum phase shifts in tim~AI
for 246.x wavelengths as a function of Courant number and vaTlOUS

values.of O. One set of curves is based upon the modified equation
analysis and one set upon the von Neumann analysis.

of the Courant number. For the shorter wavelengths and
Courant numbers greater than I the phase angle of the nu-
mencal solution varies strongly with the Courant number.
The numerical solution is most likely to exhibit leading ph'"
angles for waves of short wavelength with e approximately 0.5
and Courant number less than 0.5.
An analogous equation for the ratio of the numerical to

co~tinuum phase shifts based upon the Hirt analysis can be
wnuen by substitution of (20) for /1(3) of (27), yielding

<1>, ~ 1+ y' [3C (_1_) _ 1_ C,(_3_ - J)] (28)
6 'l-P 'l-P

Equation (28) is plotted in Figure 5 as a function of the Cour'
ant number f h d wIthor t e Same wavelengths and 0 values use
(27). This seri f . ., h beha'-. res 0 curves projects quite different P ase
lor than the d'fi t umber
f . rno I ed equation analysis. At a Couran n r

o I the Hirt I" ..' d dent 0ana YSIS projects zero dispersion 10 epen
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ana ySIS ad'n one set upon the von Neumann analysis.

h
wavelengthand a, Lagging phase angles are projected at
19here d'
I Durant numbers, and all phase angles are lea 109 at
owere dlDurant numbers. Shorter wavelengths an ower
valuesof a 'are projected to have larger phase errors.
L'O/l N eumann Analysis

As a result of the truncation of terms in (23) the modified
equation a I'd' hd'ff' na ysis does not provide information regar 109 t e
I USlve t f ' t
f na ure 0 the short-wavelength Fourier componen s
o the s I ' ibl
r • 0 uti on or of the errors that, at times, are responsi e
'Or InS1 bili 'a I ny of a numerical solution. Similarly, the approxr-
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mation in (27) limits the application of the modified-equation-
based phase relationship to waves of relatively small wave
number. In addition to its usual role of providing numerical
stability criteria, the von Neumann analysis can be used to
identify the diffusive and dispersive nature of Fourier compo-
nents of all wave numbers.
The evolution of the numerical solution in a time step ~t is

considered in this approach. If the coefficients" and f3 of (11)
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Fig. 4. Ratio of numerical to continuum phase shifts in time ~t
for 6~x wavelengths as a function of Courant number and various
values of O. One set of curves is based upon the modified equation
analysis and one set upon the von Neumann analysis.
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are assumed to be constant, the solution can be written as a
Fourier series

or = L Q.meih,
where O. m is an amplitude function at time m~t of the Fourier
component of wave number k. Each term of the difference
equation is replaced by its kth Fourier component, and
boundary influences are not considered. The decay or amplifi-
cation of each component is then evaluated by forming the
ratio of the amplitude functions at two successive times to
investigate stability and damping of the numerical scheme.
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Fig. 5. Ratio of numerical to continuum h '"

for 24A.'(. I x. and 6tLt wavelen ths as : ase ~hlfis In time .6.r
number and vanous values of 9 based& h f~nctlon of Courant

upon 1 e Hirt analysis.
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y='6
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Fig. 6. Square of the modulus of the amplification factor for 24M
and 12ltx wa I h' . 5ve engt s as a function of Courant number and vaOOU
values of O.

Perf .er orrnmg these operations upon (11) yields

r, = <It' = a + {3(e'Y - 1) (301
Q,m a+(e'Y-l)

in which the I . . nf camp ex number rk is termed the amphficatiO
a~to~. A. necessary and sufficient condition for stability of the
all ~tlon IS that the modulus of r, be less than or equal to 1 for
a Integer values of k [Richtmyer 1957]. 11 follows that the
square of the m d I' h oro u us of rk must also remain less t an
equal to 1 for a st bl' 30) .a e numencal solution, which from ( IS



FERRICK ET AL.: TAILWATER FLOW 279

a ~4 + 2~'(fJ + 1 - ~XfJ + 1)(1 - cos y) + 2fJ[2fJ(l -~) + «(c - 2)](1 - cos y)' - 2~'fJ sin'yIr,l = (31)
~4 + 4~'(1 _ ~XI - cos y) + 4(1 _ ~)'(I_ cos y)'

When Irl is equal to 1 for a component of wave number k,
the numerical scheme is termed conservative or neutrally
stable. Smaller values of Irkl2 correspond to larger inherent
dissipation of the numerical scheme.
As long wavelengths are resolved over a relatively large

number of grid points, y is small, and the following substitu-
tions can be made to simplify (31):

sin2y~y2

l-cosy""y'/2

(1 - cos y)' "" 0

yielding

I I
, _ ~, + [(I - ~) + fJ(fJ - a)Jy'r, _

~, + 2(1 - ~)y'
(33)

The numerical solution will be stable for long-period waves if
either e ,; 0.5 or C, 2 1.0 and 0 < 1.0, in agreement with the
criteria following from the modified equation analysis. Figure
6 presents Irkl2 as a function of Courant number for two wave-
lengths (24 dX, 12 dX) and selected values or e (0.9, 0.5, 0.0,
-1.0). Numerical diffusion is sensitive to C, and 8, as noted in
the modified equation analysis, and exhibits the same trends.
For long-period waves with equivalent 8 and C, the shorter
wavelengths are more highly damped.
As mentioned above, the von Neumann approach permits

analysis or short-period waves. Assuming y is n/2, (31) be-
comes

hi' = ,4 - 2~3(1 + fJ) + 2~'(1 + fJ)2 - 4~fJ(1 + fJ) + 4fJ'
~4 _ 4~3 + 8~2 _ 8~ + 4

Imposing the stability restriction on the square of the modulus
of 'k requires

~3 _ ~'(fJ + 3) + 2~(fJ + 2) - 2(fJ + I) ,; 0 (35)

The stability limits developed for the long-period waves satisfy
this mequality for a short-period wave. The Irkl2 is presented
as a function of Courant number in Figure 7 for values of y
equal to rr/2 and n, the shortest wavelength resolvable on the
numencal grid. Short-period wave damping increases with
Courant number and with decreasing wavelength and is a
mU~hstronger function of Courant number than that for long-
{!enad waves. Wave propagation with a Courant number of
1.0and e of 0.9 is undamped for both short- and long-period
waves.

be~he dispersive properties of the numerical scheme can also
Investigated by using the von Neumann analysis. For small

angles the measure of an angle in radians is approximately
equal to th . h .cal . e sine or the angle. The phase angle or t e nurnen-

solutIOn at time At is then

~,
us

0)

on
ie
Jf
ie
Jf

(mag (r,)
<I>N = -.,=-:=

Ir,l
For the diffusion wave model the ratio of the numerical to

continuum phase angle is formed with (24) and (36), yielding

sin y[ 1 J'"<1J - - (37)
,- y I + 2A + A' + C.' sin' y

where

A _ .:.C",,(fJ,-'_+.'--"2fJ,-C'-"'---c-'1Xc.-1_-_co_s--,-,y)
- (I - fJ)'

Again, propagation in the numerical model matches that in
(32) the continuum solution of the advective diffusion equation if

1.0

(34)

tt--r="2
-- r=7r
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Fig. 7. Square of the modulus of the amplification factor for ~A.\':

and 2~x wavelengths as a function of Courant number and various
values of O.
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20

serve as

this ratio is I for a given wavelength. Equation (37) is plolted
in Figures 2-4 for wavelengths or 24L1x, 12L1x, and 6Llx, re-
spectively. Though the values or <1>, are nol generally equal to
those obtained via the modified equation analysis, all trends
are in agreement. Unlike the modified equation approach,
however, no restriction upon y was used in the development of
the equation for <I>~. Therefore, for the shorter wavelengths
(Figure 4) the von Neumann analysis is likely to give a better
estimate of the phase behavior of the model. Numerical dis-
persion is typically the largest for short-period waves or short-
period Fourier components of a wave. Equation (37) reveals
that the shortest wave resolvable on the numericaJ grid is
stationary.

Linear Case Studies

A set of linear case studies is presented to demonstrate the
utility of the modified equation and von Neumann analyses in
representing model behavior and to assess the adequacy of the
mOdified-equation-based expression for numerical diffusion.
Figure 8 presents half sine waves, of wavelengths 8.1x and
166.\, which will serve as initial conditions for these studies. If
the W3\C celerity is held constant. independent of the flow, and
a constant diffusion coefficient is assumed, the solution of the
mitial value problem posed by the linear advective diffusion
equation and these initial conditions can be written as a Fou-
rier senes, Fourier series solutions for 10 krn downstream ad-
vection of the center of a wave with an assumed celerity of 0.9
m 5 and a diffusion coefficient calculated from (19) are ob-
tamed and compared with a corresponding numerical solu-
tion.

Initially. we will address the adequacy of the expression
given by the modified equation analysis for the numerical dif-
fusion inherent in the model. Cases presented in Figure 9 were
projected in the analyses (0 have minimal dispersion and a
runge of diffusion. The damping evidenced in the numerical
and anal tic I oluti ns agree in all cases. Numerical diffusion
is also well represented by (19) for the cases presenled in fig-
ures 10 and II.

We now consider cases that demonstrate the projected dif-
rusne and dispersive behavior of the model. The cases with 0
equal 100.9 and C, or 1.0(Figure 9) exhibited essentially pure
advection. 0 damping or ph~e error of any Fourier compo-
nent of the olut.lOn was projected for this case by the von
eumann anal)' IS. A small amount of dispersion, evidenced

by a slight lag in the numerical solution, was present in the
cases with B of 0.0 and C, of 0.1 (Figure 9). This slight lagging
hase error was projected by both the von Neumann and
~odified equation analyses (Figures 2 and 3). The Hirt analy-
sis incorrectly projected a leading phase error for these same
cases (Figure 5). Figure 10 contains numerical and analytical
solution comparisons for cases with a constant Courant
number and selected values of B. The leading phase error of
the longer-wavelength components and the more extreme
leading phase error of the shoft-wavelengt~ com~on~nts are
evident for the case in which () is 0.5, as projected III Figures 3
and 4. Minimal damping of the short-wavelength components
(Figure 7) is a necessary condition for development of leading
short-period waves. A small amount of phase lag occ~rred as
projected for the case with B equal to 0.0. Larger damping and

45ko----!;4----!8C---"!c;2C---"\;"6--'20

Distance (km) .
F" 9 Frier sene5rg. . Comparison of numerical (lines) and oc r or

(points)solutions for the 8 and 16l\x wavelengths after the c:ent~ec['
the wavehas ~~vec:ted.10km downstream. Case~sh~wn wer~~r~odj.
ed to have mmlmal dispersion and a range of diffusion by t
fied equation and VonNeumann analyses.
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greaterphase lag accompanied a reduction of e to -1.0. The
Hirt analysis projections of leading phase errors for all e
valueswhen the Courant number is small and for the more
extremeleading phase errors with negative {}are, again, incor-
rect.For the cases presented in Figure 11, {}is held constant as
Courantnumber is varied. As projected by the modified equa-
tionand von Neumann analyses, leading phase errors of the
short.wavelength components occurred for Courant number
0.1;lagging phase errors occurred for Courant number 4 O'
anda minimal phase error was observed for Courant number
1.0.

Numerical Mesh Selection
Assessmentof the adequacy of a numerical mesh is an im-

portant problem-dependent part of model development. As
revealedby further studies of the laboratory, rapidly varying
flowtests reported by Ferrick [1980], diffusion wave model
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Fig. II. Comparison of numerical (line) and Fourier series
(points) solutions for the 16&x wavelength and a fixed value of
e = 0.5 after the center of the wave has advected 10 km downstream.

mass balance, and wave propagation speed errors are reduced
with improved numerical grid refinement. In practice, how-
ever, cost considerations and data availability frequently pre-
clude the use of highly refined meshes. Though numerical ex-
perimentation with mesh refinement is the final test of a grid,
the linear model analysis provides guidance.
A basic requirement of a numerical mesh for tailwater flow

studies is that it adequately resolve the wavelengths of interest
in the prototype. The linear analysis has shown tbat numerical
diffusion and model phase errors increase as the mesh is made
progressively coarser. Phase errors are evident in the lightly
damped e ~ 0.5, C, = 0.1 case with 9-mesh-point resolution
(Figure 10) and to a lesser extent in the same case with 17-
point resolution (Figure II). These same mesh resolutions ex-
hibit little phase error in cases with increased diffusion (Fig-
ures 10-11).
The 9- and 17-mesh point wave resolutions retained the
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correct wave peak in the linear case studies. An important
question to resolve is whether a coarser mesh would affect
model diffusion. To investigate this effect, the half sine wave
was resolved on a coarse grid with only five mesh points, and
cases identical to those presented in Figure 10 were repeated.
Greater damping in the coarse mesh simulation (Figure 12)
results from the increased spatial mesh dimension L\x, for
given values of 0 and the Courant number. Large diffusion
cases arc well behaved; the wavelength of the flow quickly
increases, and numerical and analytical solutions correspond
as before. The peak flow in the lightly damped 0 = 0.5, C, =
0.1 case, however, no longer corresponds to the analytical
solution, and the amplitudes of the leading waves have in-
creased. The wave period in this case is short relative to the
numerical grid, and a more accurate estimate of numerical
diffusion is required. By retaining more terms of the modified
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equation, a higher-order estimate of diffusion could be made.
However, a refined mesh corrects the wave peak error and
yields decreased amplitudes of the leading waves.

Wave celerities and corresponding Courant numbers vary
with location and time in diffusion wave model applications.
The time step in the model, imposed by constraining the maxi-
mum Courant number, varies with flow conditions in the
study reach. The linear analysis has shown that numerical
diffusion of all wavelengths increases with Courant number
(Figure 1, 6, 7), and this effect was demonstrated in Figure II.
Significant lagging phase errors occur for shorter wavelengths
at Courant numbers greater than 1.0 (Figure 3, 4). We will
demonstrate the application of these concepts for selection of
the maximum Courant number constraint in the "Field Appli-
cations" section below .

Physical/Numerical Diffusion and Dispersion
The water surface slope is largely responsible for diffusion of

flow waves and the existence of a looped rating curve in rivers.
Cunge [1969] proposed the concept of balancing physical and
numerical diffusion to enhance the capabilities of the Musk-
ingum flow routing model, and Koussis [1976] also followed
this approach. In these models wave diffusion does not
depend upon the water surface slo~e.

In the modified equation analysis the order of accuracy of a
difference scheme is defined as the power of the computational
mesh dimension in the coefficient of the lowest-order error
term. If D of (19) is physically based, the numerical scheme is
accurate to second order. Physically based values of D and E
Yield a third-order numerical solution. Equating the diffUSIOn
coefficients of (4) and (19) transforms an error term in the
numerical solution of the continuity equation into a meaning-
ful part of the model and specifies the parameter 0 as

0=1 + C,
In [(1 + A - C,)/(1 + A + C,)]

A = (<t> (1 _ F'/4)
BSo(c>t.x

wh di h nue~e IS~ arge and wave celerity are averaged over a ~
mencal grid cell. For flow at relatively low Froude numb<:
common in rivers, (38) reduces to the equation given by
K oussis [1980], and at small Froude and Courant numbers,
(38) is equivalent to the expression developed by Cunqe [1969]
for the . h . .

welg nng factor III the M uskingum model

(38)

0- 1(I (<t»
2 BSo(c>t.x

(391
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The parameter 0 provides variable diffusion in the model
when it is continually updated at each point in the numerical
mesh. We have demonstrated that model diffusion also de-
pends upon the Courant number. Larger Courant numbers
generate increased damping, but (38) compensates by increas-
ing 0 to maintain the balance between physical and numerical
diffusion. If the Courant number is increased further, 0 calcu-
lated from (38) may exceed the upper bound for model stabili-
ty, and small values of diffusion cannot be attained in the
model. If the diffusion balance is not enforced, the accuracy of
themodel is degraded.
Strupczewski and Kundzewicz [1980J and Dooqe et 01.

[1982] found, in analyses of the Muskingum model, that nega-
tive values of the weighting parameter are due to short model
reach lengths. The same conclusion can be drawn from the
value of e expressed in (38) and (39). If negative values occur, e
can no longer be considered a weighting parameter. Instead, it
is a parameter used to control the diffusion of the numerical
model.
In the interest of further enhancing the physical basis of the

diffusion wave model, equating the coefficients of the physical
and numerical dispersion terms of (4) and (19), respectively,
would provide improved model phase accuracy. However, the
model does not contain another free variable with which to
enforce balanced dispersion. The physical dispersion coef-
ficient of (4) is small and always positive. The dispersion coef-
ficient in the model is approximately zero for e of about 0.25
and Cr:-::; 0.5. Larger values of (J correspond to a positive nu-
merical dispersion coefficient, and conversely, smaller 0 values
indicate a negative coefficient. Model phase errors become
apparent when the absolute value of the numerical dispersion
coefficient is inappropriately large (19).
Chang ez 01. [1983J studied the diffusion wave model ap-

plied to flood waves in rivers. They reported an unphysical
computed discharge that decreased below an initial steady
state prior to the passage of a wave for positive 0 and recom-
m.ended increasing model time step as a corrective measure.
Lightly damped waves are characterized by positive e and
small Courant number or &t (Figure 1). We have experienced
model tendencies for lightly damped, rapidly varying flow of
d~creasIng discharge immediately prior to an increasing flow
WIth the subsequent generation of small-amplitude, short-
penod leading wave trains and of increasing discharge prior to
a decreasing flowTh . .

e development of leading phase errors of short-penod
wave components was projected in the model analysis (Figure
4) and demonstrated in the linear case studies for lightly
damped waves (Figure 10, II). The recommendation of Chang
er 01. [1983J reduces leading phase error (Figure 4) and in-
creases n . .. .'. umencal diffusion (Figure 1) that acts to damp re-
mammg sh t . .. or -period waves (Figure 7). However, excessive nu-
mencal diffusion disrupts the diffusion balance of the solution,
and larg C .e Durant numbers give unacceptable mass balance
errors fo id fIe' r rapi ly varying flow. Our approach to control 0

otdmg.model phase error is to suppress the initial formation
L.. leading waves by retaining the previous computed dis-
C"arge Numeri . . h. . mencal expenments have venfied that this mec a-
filsmdoA cs not adversely affect the solution.
L.. n adequate description of sharp-fronted waves of relatively
~~P'd .
fi erio that are encountered in tailwaters may dictate
ne resol ( . fo . u IOn of the computational mesh. Negative values 0
, which rna h iffusi '11int y t en be required for balanced dl usron, Wl
rOduce I . '11 bn ti aggtng phase error in the simulation that WI e
o 1ceable for the shorter wavelengths. Minimization of the
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dispersion imbalance is possible for many cases with judicious
selection of the numerical mesh and is not generally a serious
limitation. Still, the insights obtained from the analysis remain
valuable as phase error can be anticipated, improving the in-
terpretation of model output.

FIELD ApPLICATIONS

Two extensive field tests were conducted to confirm the
analytical findings concerning important physical processes in
rapidly varying tailwater flow and to demonstrate the practi-
cal utility of the linear model analysis and thereby establish
the applicability of the diffusion wave model. The tests were
conducted in 21-km study reaches of the Hiwassee River im-
mediately below Apalachia Dam and of the Clinch River im-
mediately below Norris Dam, where the features of the tailwa-
ter hydrograph are sharpest and the effect of flow wave diffu-
sion is most pronounced. The physical characteristics of these
river reaches span those of a large number of streams. The
Hiwassee River bed has a steep slope, dropping over 107 m,
and by contrast the Clinch River has a relatively mild bed
slope, dropping only 7.6 m. Both reaches have typical alter-
nating pool-rime structures; however, a much greater percent-
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border. At the dam the river has a drainage area of 2636 km"
The bulk of the flow in this reach is normally diverted from
the dam through a conduit to the Apalachia powerhouse, lo-
cated near the end of the reach. Therefore, flow Occurs only
during floods and as a result of local inflows from a drainage
area totaling 306 km'.
A field investigation of flow in the Apalachia Dam tailwater

was conducted by the Tennessee Valley Authority (TVA) on
March 22-23, 1979. The hydrograph during this study was
produced with sluice gates at the dam and is given in Figure
13. River stage was recorded at HRM 62.8, 59.0, 56.9, and 53.0
during the test. The channel shape was approximated in the
model as rectangular throughout the tailwater, and local
inflow was initially neglected. Channel width and slope were
obtained from USGS quadrangles. The tailwater channel
width varied between 46 and 134 m, averaging 85 m, and the
channel bed slope varied between 0.0027 and 0.0084. Man-
ning's roughness coefficients, estimated on the basis of field
observations and adjusted during model calibration, ranged
between 0.04 and 0.07, averaging 0.066.
In addition to physical parameters characterizing the reach,

model application requires the selection of a numerical grid.
The linear analysis and past experience provided guidance in
selecting a spatial grid size of 1600 m and a maximum Cour-
ant number of 1.0 for application of the model to the Apala-
chia tailwater. Lagging phase errors associated with negative
values of (j were not encountered with these mesh parameters,
but relatively light wave damping necessitated the suppression
of leading phase errors.
An initial comparison of measured and computed stage is

presented in Figure 14. The propagation of the 28-m'/s release
in the model lags the data by a time that increases with dis-
tance downstream. The timing and magnitude of the other
releases are accurately represented in the model. Due to the
absence of the powerhouse discharge, the measured and com-
puted stages are not in agreement at HRM 53. Sensitivity
studies were conducted in which estimated input parameters,
width, and roughness were varied in an effort to improve the
agreement between the modeled and measured propagation of
the 28-m3/s wave. Increased channel roughness caused a re-
duction in wave speed, an increase in steady-state stage for a
given flow, and an extended duration of the increased stage.
Increased channel width caused a decrease in the magnitude
of stage changes, a slowing of wave movement, and a de-
creased period of increased flow. The overall agreement of
model and prototype, however, was not improved.
A physically justifiable development that greatly improved

the propagation speed of the 28-mJ/s wave without signIfi-
canny affecting the larger waves (Figure 15) was the inclusIOn
of local inflows. Local inflows, measured at 0.35 mJ/s krn for
the 5.6-krn reach nearest the dam were assumed to be repre-
sentative for the tailwater, and the known discharge at the
pow~rhouse was included as a local inflow. Figure 14 presents
a re~l~e~comparison between the model and prototype s~ag~.
SensltJ~lty studies indicated that remaining discrepancIes 10
the arnval times of the 28-013/s wave can be attributed to the
lack of detailed inflow data.
At HRM 63 the only discrepancy between computed and

obs~rved stages concerns the magnitude of the stage increase
d~T1ng passage of the 28.013/s wave. The effective channel
width at low flow is less than at higher flow, but due to the
r~ctangular channel assumption, measured stage at low now IS

higher than the computed stage. At HRM 59 the model accu-
rn~Yd.cr·b h . w~1 cs t e prototype stages, except at times
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age of the Norris tailwater is pooled at low flow. The Hi-
wassee River bed is extremely rough, with large boulders and
trees in the channel, creating roughness elements that are typi-
cally on the order of the flow depth. In general, roughness
clements in the Clinch River reach are much smaller than
those of the Hiwassee River reach. Even during lengthy zero-
flow release periods from Norris Dam, the roughness elements
in the pools remain submerged.

Apa/achia Dam Tailwaler

Apalachia Dam is situated at Hiwassee River mile (HRM)
66, near the southern end of the Tennessee/North Carolina
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Fig. 16. Norris Dam flow releases, July 1-7, 1980.

onlylocal inflows are present. The river is pooled at low flow
at HRM 57, and as a result the computed river stage at this
locationfalls below the measured stage at low flow. At HRM
53,model and prototype stage data agree closely for all the
releases.The model accurately conserved mass and repro-
duced the timing, amplitude, and shape of flow waves
throughoutthe study reach, reflecting favorably upon the nu-
mericalmesh parameters used. The physical justification for
omissionof backwater effects in the model cannot yet be
judged.It is possible that the pooled reaches in the Apalachia
tailwaterwere short enough to have a negligible effect upon
theflowor that the addition of local inflow compensated for
theeffect.

Norris Dam T ailwater

Norris Dam is situated at Clinch River mile (CRM) 79.7,
nearOak Ridge, Tennessee. The drainage area of the river at
the dam is 7542 km". An individual pool located near the
centerof the study reach is over 4.0 km in length and has a
bedslope of only 0.00012. As the diffusion of a flow wave in a
widerectangular channel is inversely proportional to the bed
slope(5), we expected much greater diffusion of the flow waves
10 theNorris tailwater relative to that in the Apalachia tailwa-
ter,

f A 160-hour controlled release test (Figure 16) was per-
I~med in the Norris Dam tailwater by the TVA on July 1-7,
80,durmg which the variation of river stage was continu-

°luSlyrecorded at CRM 78.85,76.1,73.6,71.4, and 67.3. The
oog I'h poo In the study reach was isolated by the placement of
t e recording gages at CRM 76.1 and 73.6. The channel shape
Was assum d i he In t e model to be rectangular throughout the
study re h P . .ac. nor to the test, the TVA surveyed the tailwater
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<II 160
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Fig. 17.

for channel width and bed slope. Measured widths ranged
between 79 and 165 m, averaging 116 m, and bed slopes
varied between 0.00012 and 0.00130. Local inflows were small
during the test, averaging about 0.035 m'ls km, with point
inflows of 0.54 m'ls from Coal Creek, the largest tributary,
and 1.13 m'ls leakage past Norris Dam. Calibrated roughness
coefficients used in the model simulations ranged between
0.Q15and 0.035, averaging 0.026.
The Norris tailwater model required a relatively fine spatial

resolution of 800 m to provide stage and discharge infor-
mation adequate to accurately resolve short-period releases.
The linear analysis revealed that the dissipative and dispersive
characteristics of the model are sensitive to the Courant
number and the {}parameter, in addition to the spatial grid
resolution. The limitation imposed upon the maximum value
of the Courant number and the effect of specifying a minimum
value of the parameter {}were addressed systematically in a
series of preliminary simulations to achieve optimal model
accuracy and to evaluate the model behavior predictions of
the linear analysis for nonlinear cases.
Figure 17 presents computed flow at CRM 67.2 with a con-

stant 0 value of 0.5 and maximum Courant numbers of 0.25
and 1.0, respectively. The simulation at the higher Courant
number exhibited greater model damping and lagging of
waves relative to the lower Courant number simulation; this
was especially pronounced for short period waves. Model
damping in the small Courant number simulation was mini-
mal. Based upon the linear model analysis, all of these ten-
dencies were expected. Both simulations created mass, and at
CRM 67.2 the smaller Courant number case had a mass con-
servation error of 28%.
A comparison of the simulations with a constant {}value of

O~0.5

--cr:1.0
--- cr=O.25

ob==±Lb_'---"'-b-L.-~,-J-,J80;'~Ii5i-~,to--.-l._ifc;---''--"
20

Time {hr s}

H d h d I f N I'S tail water study reach computed with constant (J = 0.5, spatial grid
y rograp sat ownstream exten 0 orr 0

resolution of 800 m, and maximum Courant numbers of 0.25 and 1. .
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Fig. 18. Hydrographs at downstream extent of Norris tailwater study reach computed with constant ()= 0.0, spatial grid
resolution of 800 m, and maximum Courant numbers of 0.25 and 1.0.
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0.0, given in Figure 18, shows that wave propagation was
slightly faster and wave attenuation was greater for the simu-
lation with a maximum Courant number of 0.25 than for the
Courant number 1.0 simulation. The apparent contradiction
with the linear theory concerning wave attenuation is actually
an effect of improved mass conservation, which results from a
quicker arrival of the tail of the wave. The bulk of the differ-
ence between the two simulations occurred in the long, nearly
flat, pooled reach. Again, both simulations created mass, but
the error was only 4% for the smaller Courant number case.
Measured and computed stages with a constant 0 value of 0.0
and a maximum Courant number of 0.25 agree reasonably
well at all gages, although modeled damping is generally less
than that in the prototype. Insufficient numerical diffusion is
an indication that negative 0 values are needed to maintain
the physical-numerical diffusion balance, and satisfactory
model accuracy suggests that a variable weighting factor is
not essential for modeling flat, ponded river reaches.
Further reduction of the Courant number did not affect the

computed hydrograph at the downstream end of the study

2BO

240 ,,
200 I

'60

120

BO.
40~,

E

• 0~
C 2BO

~
2406 I

I \
200 - , I

I I
'60

,
120

80

40

0
2C

"
" I

8"0
-- CroLO

--- C[00.25

'00 '20 '40 '60

reach for any of the constant 8 runs. Larger Courant number
(:<:2.0) simulations were attempted, but the model did not
converge to a solution at the initial abrupt flow increase of the
inflow hydrograph. This convergence problem was not reo
solved because of generally poor model accuracy at large
Courant numbers for rapidly varying flow.
Comparing the simulations of like Courant number in Fig-

ures 17 and 18 reveals model tendencies caused by varying the
()parameter that were predicted in the linear analysis. The
effect upon model damping pf varying () is greater than the
effect of varying the Courant number. For the cases in whiche
is set at 0.0 the slopes of wave fronts are less steep, corre-
sponding to increased diffusion relative to the cases where e is
0.5. Also, the arrivals of the short wavelengths at CRM 67.1
are lagged in the 0 equal 0.0 cases, relative to the e equal 0.5
cases.
The linear analysis indicated that negative values of e, re-

quired to maintain the diffusion balance when fine numerical
grids are used, introduce a lagging phase error in the modeled
results. Computed hydrographs for simulations having a emin

-- 8>-00
--- 8~o



FERRICK ET AL.: TAILWATER FLOW

limitationof 0.0 and no limitation upon 0min are presented in
Figure19 for CRM 73.7 and 67.2. Only minimal differences
betweenthe simulations existed upstream of the 4.0-km
pooledreach where bed slope is relatively large and the 8m,"

limitationis imposed infrequently. Downstream of the pool at
CRM 73.7, the flow and stage differences between the simula-
tions were pronounced and continued to increase to the
downstreamextent of the study reach. Figure 19 reveals that
thetimingof wave arrival was not greatly affected by the emin
limitation,but wave damping and mass balance were ex-
tremelysensitive to the limitation. Much greater wave diffu-
sionoccurred as expected in the simulation without a mini-
mume limitation. Limiting 8 to positive values did not pro-
duceattenuation of the modeled stage peaks that was ade-
quateto reproduce the prototype stage measurements. Limi-
tinge to positive values resulted in an increase in mass of 14%
at the downstream end of the study reach. Relaxing the 8
limitationto be greater than -1.0 reduced the increase of
massto 8%, and removing the limitation altogether yielded a
4% decreaseof mass at the downstream end of the reach.

The preliminary Norris tail water simulations support the
validityof model behavior predictions of the linear analysis
fornonlinear cases. Optimal model accuracy is achieved with
a maximum Courant number of about 0.25 and without a
limitationupon emin' Measured and computed stages with
theseparameter specifications are compared in Figure 20 at
fivelocations on the tailwater. The stage measurement lo-
cationsdo not coincide exactly with the modeled sections, and
proper interpretation of the offsets between measured and
computedstage requires that these differences be considered.
Overallagreement between the model and the data on wave
timing,amplitude, and shape is excellent.

At the upstream-most gage (CRM 78.85) the model (CRM
78.7) reproduces all of the releases. An error in the chart speed
ofthe stage recorder, beginning at hour 100, leads to an in-
creasmgtiming discrepancy toward the end of the test. At the
headof the long pool, CRM 76.1, wave timing and shape are
wellrepresented in the model CRM 76.2, but peak stages of
thesmaller-amplitude waves are slightly less attenuated than
IU the prototype. In the long pool, almost all roughness e1e-
~ents were submerged at low flow and small values of Man-
mng' 's roughness (0.015) were required to reproduce stage
~hangesin the reach. At the downstream end of the pool,

RM 73.7, wave shapes, peaks, and timing are generally well
representedin the model. Because the value of e required for
adequate diffusi . . hI USlOn III the model is small or negative, t e
smallerwa . h h . d, ves Wit sort wavelengths are lagged as projecte
IU th Ii 'e mear analysis. Comparing the stage data at CRM 71.4
and67 3 . h h .. .

. Wit t e numencal simulation at CRM 71.2 and 67.2,
respe~tively,also reveals excellent agreement. Again, due to
negatIVe8 I . .. . va ues In the model small short-period waves ar-nVJnbe " .g tween hours 70 and 90 lag slightly in the simulation.

DISCUSSION AND CONCLUSIONS

chOUf linear analysis of the dynamic equations of open
tio:nn~1f1~w produced an equation describing wave ad vee-
th ,dlff~slon, and dispersion in rivers. In dimensionless form
vae.equatlonprovides insight regarding the importance of the

ncus ph . Ithek' ysica processes affecting the flow. The adequacy of
lIlat'"emanc wave equation and the potential for shock for-

IOnIn th h .
nitudeof e ~ ann.el are e~alu~ted from ~he relative ma~-
indo the dimenSIOnless diffusion coefficient. The analysis

leat" that d'ff . . .
I USlOn of short-period waves in nvers IS an
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important process and that wave celerity in natural rivers at
small Froude numbers is dominated by friction and essentially
independent of inertia.

We describe rapidly varying flow in tailwater streams with
an inertia-free diffusion wave model. The model allows vari-
able wave diffusion and does not require a downstream
boundary condition. The modified-equation, Hirt, and von
Neumann analyses of the model were conducted to improve
accuracy and our interpretation of results. Identical stability
conditions, developed with each approach, revealed that nu-
merical stability does not impose a limitation upon the model
time step or the minimum value of 8.

The Apalachia and Norris tailwater studies demonstrated
that model behavior predictions of the linear analysis are valid
for nonlinear cases. The dissipative and dispersive character-
istics of the model are sensitive to the selection of spatial grid
resolution, the Courant number, and e. Guided by the analy-
sis, spatial mesh resolution and maximum Courant number
for optimal model accuracy can be estimated a priori, and the
only calibration required for model application is the adjust-
ment of Manning's roughness. The analysis showed that
model damping increases as () decreases, as the Courant
number increases, and as wavelength relative to the spatial
grid length Ax decreases. The model analysis also revealed
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Fig. 20. Measured and computed stage at several locations. on t~e
Norris tailwater. A maximum Courant number of 0.25, spatial gnd
resolution of 800 m, and variable 0 without a lower bound were
conditions of the numerical simulation.



these observations the reproduction of all features of the mea-
sured stage-time traces by the model demonstrates that rap-
idly varying flow in shallow rivers is not affected significantly
by inertia. The dominance of friction over inertia for large
wave propagation in deeper rivers was indicated by Stoker
[1957J in his study of rapidly rising floods on the Ohio River.
He reported that the first measurable disturbance traveled far
behind the initial dynamic wave at the wave speed used in
kinematic routing methods. As the importance of inertia is
greatest for rapidly varying flow in a mildly sloped stream, we
conclude that inertia is unimportant in natural, free-flowing
nvers.

These results have clear implications for understanding the
physical processes controlling downstream wave propagation
following the breach of a dam. Frictional dissipation of large-
amplitude flow waves is dominant over inertia and controls
wave celerity. Because of the typical short-period nature of
dam-break waves, diffusion affects wave amplitude signifi-
cantly and acts to resist the formation of a shock front. There-
fore, reliable prediction of wave amplitude and timing over
distances greater than a few wavelengths depends upon accu-
rate descriptions of these processes.
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that damping and phase errors occur when the spatial grid is
overly coarse in relation to wavelengths of interest. An accu-
rate expression quantifying the numerical diffusion of the
model was an important result of the modified equation
analysis. The von Neumann and modified equation analyses
of model phase error concurred and were supported over wide
ranges of 0 and the Courant number by linear routing studies;
however, the frequently utilized Hirt analysis yielded incorrect
phase relationships.

The capabilities and accuracy of the diffusion wave model
are enhanced by allowing 0 to vary so that a balance is main-
tained between physical and numerical diffusion. The limi-
tation specified in many diffusion wave models-that the
weighting parameter applied to the time derivative, in our case
0, be greater than 0.0 should not be generally applied,
Mildly sloping rivers modeled with a fine spatial mesh for
adequate wave resolution require negative values of this pa-
rameter for proper wave diffusion.

A physical/numerical dispersion balance eliminating model
phase error cannot be maintained simultaneously with the
diffusion balance. Leading phase errors, occurring as a result
of light damping in the Apalachia tailwater model, were sup-
pressed without adversely affecting the simulation. The phase
lug introduced in the Norris tailwater simulation as a result of
negative values of 0 was minimal, noticeable only for small,
short-period waves. For many cases, phase error can be mini-
rnized by judicious selection of the numerical mesh.

The release hydrographs and measured stage data from the
Apalachin and Norris Dam tailwaters provided a discrimi-
nating test of model performance for wide ranges of bed
channel slope and roughness. The ability of the diffusion wave
mode~ to simulate flow waves with wide ranging amplitudes,
durations. shapes. and base flows in both tailwaters demon-
strate its generality and confirms analytical findings con-
cerning important rapidly varying flow processes in natural
rivers.

The dissipati?n of energy by numerous large-scale rough-
ness elements III the Apalachin tailwater channel was ad-
equately described by Manning's equation. The effect of diffu-
sion of the waves during passage through the steeply sloping
study reach was srnull, nnd the computed rating curves at the
four stage mea~ure~lel~t locations were not strongly looped.
These o~servttllons indicate that the water surface slope term
retained In the momentum balance may not be important. The
water urr~ce slope increases the energy slope at the wave
front. cau mg an in tease in the celerity of the front. Though
the hape of the. computed hydrograph was not significantly
all~red. dlscou~~mg !he water surface slope caused a lag in the
arrival of' the nsing limb of each hydrogrnph and degraded the
wave tuning 3.greernent between tbe model and the data. Cor-
rect propa~at10n o~ the ~mall flow release in the Apalachia
model required the inclu Ion of local inflows and could not be
a hreved through model calibration.

The pre' nee of length} backwater reaches in the flatly slop-
mg OTTiS I~l"ate.' dtd not signifieantly affect the unsteady
ft "h V\.~ ' allow'mg a simple eharacterization of pooled
reac e a small bottom slope and roughness. The Norris
nulwater Slud} demon trated Chat wa diffusi . ,I . , ve J usron m nuldly
~:ng nvers I Significant, resulting in a dramatic reduction

o on-penod wave amplitudes in a short distance
Dvnanuc waves or ble jsi •., ah d measura e sIze were not observed

mol,109 ea _ or the ~ai~ flow or propagating upstream as a
result f W3\c rcflectlOn 10 eithe fi ld dr e stu y. Together with

NOTATION

a damping exponent, modified equation analysis.
A cross-sectional area of the channel.
b phase exponent, modified equation analysis.
B channel width.
c wave celeri ty.
C average wave celerity in a reach.
e Chezy conveyance coefficient.

Cm constant, Manning's equation.
C, Courant number.
D diffusion coefficient.

D* dimensionless diffusion coefficient.
E dispersion coefficient.

EJI dispersion coefficient, Hirt analysis.
E* dimensionless dispersion coefficient.
F Froude number.
9 acceleration due to gravity.
FI

j spatial index.
k wave number.
m time index.
11 Manning's roughness coefficient.

O( ) the order of.
q discharge per unit width.
o, local inflow per unit length of channel.
Q discharge.
Q. amplitude of the discharge component of wave

number k.
Qo discharge at previous time step.
Q* dimensionless discharge.

Q derivative of discharge with respect to time.
R channel hydraulic radius.
'. complex amplification factor of the kth Fourier

component.
Sf slope of the energy grade line.
So slope of the channel bottom.
t time .
t* dimensionless time.
V velocity.
x distance.
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x* dimensionless distance.
y flow depth.
Yo flow depth at previous time step.

Ax,lit finite distance and time increments.
a grouping of parameters, diffusion wave model.
p grouping of parameters, diffusion wave model.
t k!n.
e balanced diffusion parameter.
)1 coefficients of terms in the modified equation.
$, phase angle of continuum solution.
!fiN phase angle of numerical solution.
$r ratio of numerical and continuum phase angles.

( > average over time At.
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