
Chow, Froude, and Vedernikov 

Victor M. Ponce, M. ASCE 

Department of Civil, Construction, and Environmental Engineering, San Diego State 

University, San Diego, CA 92182-1324; PH (619) 594-4029 email: 

ponce@ponce.sdsu.edu 

ABSTRACT 
 

The concepts of Froude and Vedernikov numbers are reviewed on the 

occasion of the 50th anniversary of the publication of Ven Te Chow's Handbook of 

Hydrology. While the Froude number (F) is standard fare in hydraulic engineering 

practice, the Vedernikov number (V) remains to be recognized by many practicing 

engineers. It is surmised here that this may be due in part to the fact that Chow placed 

the Vedernikov number in Chapter 8 of his book, instead of placing it in Chapter 1, 

together with the Froude number. A comprehensive description of the variation of β, 

the altogether important exponent of the discharge-flow area rating (β - 1 = V/F), is 

accomplished here to recognize and honor the contributions of Professor Ven Te 

Chow to the hydraulic engineering profession. 

THREE CHARACTERISTIC VELOCITIES IN OPEN-CHANNEL FLOW  

There are three characteristic velocities in open-channel flow (Ponce 1991):  

1. The mean velocity u of the normal, steady flow, expressed by the Manning or 

Chezy formulas;  

2. The relative velocity v [relative celerity] of unsteady kinematic waves, derived 

from the Seddon celerity formula; and  

3. The relative velocity w [relative celerity] of unsteady dynamic waves, 

expressed by the Lagrange celerity formula.  

The Manning equation is (Chow 1959): 
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  (1) 

in which u = the mean velocity of the steady uniform flow, R = hydraulic radius, S = 

friction slope, and n = Manning friction coefficient.  

The Chezy equation is (Chow 1959): 

     
 
  

 
  (2) 

in which C = Chezy friction coefficient.  



The Seddon formula expresses the kinematic wave celerity ck as follows 

(Seddon 1900; Chow 1959): 

 
   

 

 

  

  
 

(3) 

in which T = channel top width, Q = discharge, and y = flow depth. 

The Seddon formula is alternatively expressed as (Ponce 1989): 

       (4) 

in which β = exponent of the discharge-flow area rating: 

         (5) 

The relative kinematic wave celerity v, or Seddon celerity relative to the flow, is: 

                    (6) 

The relative dynamic wave celerity w, or Lagrange celerity relative to the flow, is 

(Chow 1959): 

       
 
  (7) 

in which g = gravitational acceleration, and y = flow depth. 

TWO DIMENSIONLESS NUMBERS IN OPEN-CHANNEL FLOW  

The three velocities u, v, and w, expressed by Eqs. 1 or 2, and 6 and 7, 

respectively, give rise to two independent, dimensionless numbers, the Froude and 

Vedernikov numbers (Ponce 1991). The third number, or third possible combination, 

is expressed in terms of the other two.  

The Froude number is the ratio of u and w: 

   
 

 
 

 

    
 
 

 
(8) 

The Vedernikov number is the ratio of v and w: 

   
 

 
 

 

    
 
 

 
(9) 

The third number is the ratio of v and u: 



  

 
     

 

 
 

(10) 

Note that the quantity β - 1 is also equal to the ratio of the Vedernikov and 

Froude numbers. Once two of these numbers are known, the third one can be 

determined.  

The Froude number describes the condition of (1) subcritical, (2) critical, or 

(3) supercritical flow (Chow 1959). Under subcritical flow, dynamic waves can travel 

upstream because u < (g y)
1/2

. Under supercritical flow, dynamic waves cannot travel 

upstream because u > (g y)
1/2

. Under critical flow, dynamic waves remain stationary 

because u = (g y)
1/2

. Thus, the Froude number describes whether the flow can be 

controlled from downstream (subcritical) or from upstream (supercritical). 

The Vedernikov number describes the condition of (1) stable, (2) neutral, or 

(3) unstable flow (Chow 1959). Under stable flow, kinematic waves travel slower 

than dynamic waves because v < (g y)
1/2

. Under unstable flow, kinematic waves travel 

faster than dynamic waves because v > (g y)
1/2

. Under neutral flow, kinematic waves 

travel at the same speed as dynamic waves because v = (g y)
1/2

. When V ≥ 1, flow 

conditions are such that roll waves form in open-channel flow. In practice, roll waves 

appear as a train of small surface waves traveling downstream in open-channel flow; 

see Fig. 1. Neutral flow characterizes the condition under which kinematic waves, 

which transport mass, travel at the same speed as dynamic waves, which transport 

energy (Lighthill and Whitham 1955; Ponce 1992).  

  

 

Figure 1.   Roll waves in irrigation canal, Cabana-Mañazo project, Puno, 

Peru. 



The parameter β characterizes the type of friction and cross-sectional shape; 

for instance, β = 4/3 is applicable to Manning friction in a triangular channel. For a 

given type of friction and cross-sectional shape, the value of β is set. The neutral-

stability Froude number Fns is that which corresponds to the Vedernikov number V = 

1. The neutral-stability Froude number is a function only of β. From Eq. 10, the 

neutral-stability Froude number is: 

 
    

 

   
 

(11) 

Table 1 shows values of Fns for selected values of β corresponding to typical 

combinations of types of friction and shape of cross section, from a high of β = 3 for 

laminar flow to a low of β = 1 for an inherently stable channel (Ponce 1991). To 

allow ready comparison, Col. 2 shows values of 24 β, to indicate the gradual decrease 

of β from 3 to 1. 

Table 1.  Values of Fns for selected values of β 

[1] [2] [3] [4] [5] 

β 24β 
Type of 

friction 

Shape of cross 

section 
Fns 

3 72 Laminar 
Hydraulically 

wide 
1/2 

8/3 64 

Mixed 

laminar-

turbulent 

(25% turbulent 

Manning) 

Hydraulically 

wide 

 

3/5 

21/8 63 

Mixed 

laminar-

turbulent 

(25% turbulent 

Chezy) 

Hydraulically 

wide 

 

8/13 

7/3 56 

Mixed 

laminar-

turbulent 

(50% turbulent 

Manning) 

Hydraulically 

wide 
3/4 

9/4 54 

Mixed 

laminar-

turbulent 

(50% turbulent 

Chezy) 

Hydraulically 

wide 
4/5 

2 48 

Mixed 

laminar-

turbulent 

(75% turbulent 

Manning) 

Hydraulically 

wide 
1 



15/8 45 

Mixed 

laminar-

turbulent 

(75% turbulent 

Chezy) 

Hydraulically 

wide 
8/7 

5/3 40 
Turbulent 

Manning 

Hydraulically 

wide 
3/2 

3/2 36 
Turbulent 

Chezy 

Hydraulically 

wide 
2 

4/3 32 
Turbulent 

Manning 
Triangular 3 

5/4 30 
Turbulent 

Chezy 
Triangular 4 

1 24 Any 
Inherently 

stable 
∞ 

Table 1 shows that the value β = 1 represents an asymptotic behavior, because 

for β  ⇒  1, the neutral-stability Froude number Fns  ⇒  ∞. Since the practical upper 

limit for the Froude number is much less than ∞, typically closer to 20 (Chow 1959), 

it follows that the condition β = 1 describes a channel that is always stable. A channel 

of rating such that β = 1 has been referred to as the inherently stable channel (Ponce 

1991).  

From Eq. 5, for β = 1, the flow velocity is a constant, α = Q/A. Thus, an 

inherently stable channel is one for which the flow velocity remains constant as the 

hydraulic radius varies (Liggett 1975). The shape of the inherently stable channel has 

been documented by Ponce and Porras (1993) (Fig. 2). 

 

 

 

 

 

 

 

THE FROUDE NUMBER  

The Froude number is attributed to William Froude, who was born in 

Dartington, Devon, England in 1810, and died from a stroke on a cruise to South 

 

Figure 2.   Cross-sectional shape of the inherently stable channel 

(Ponce and Porras 1993). 

http://apo.sdsu.edu/vedernikov1777view.html
http://apo.sdsu.edu/vedernikov1777view.html


Africa in 1879, at age 69. In 1861, Froude wrote a paper on the design of ship 

stability in a seaway (http://froude.sdsu.edu). Later, between 1863 and 1867, working 

with physical models of ships, he showed that the frictional resistance in the model 

(at reduced scale) and prototype (the actual ship) were equal when the speed V was 

proportional to the length L to the power 1/2: 

     
 
  (12) 

in which k is a constant that applies to both model and prototype. Froude called this 

physical law the "Law of Comparison." He was the first to identify the most efficient 

shape for the hull of ships, as well as to predict ship stability based on studies using 

reduced-scale models. 

In open-channel hydraulics, Froude's Law is embodied in the Froude number, 

defined as follows (Chow 1959; Brater and King 1976): 

 
  

 

    
 
 

 
(13) 

in which D is the hydraulic depth, defined as the flow area divided by the wetted 

perimeter. Note that for application to open-channel flow, the horizontal length L in 

Froude's Law (Eq. 12) has been replaced by the hydraulic depth D (Eq. 13). This 

equation is basically the same as Eq. 8, wherein the hydraulic depth D has been 

approximated as the flow depth y.  

THE VEDERNIKOV NUMBER  

The concept of Vedernikov number was first published in a Soviet journal 

(Vedernikov 1945; 1946). Craya wrote about the same concept in a paper published 

in 1952 (Craya 1952). The Vedernikov-Craya criterion states that roll waves will 

form when the Seddon celerity equals or exceeds the Lagrange celerity, that is, when 

the kinematic wave celerity, governed by gravity and friction, exceeds the dynamic 

wave celerity, governed by the pressure gradient and inertia. This is the condition that 

the Vedernikov number V  ≥ 1.  

Note the unfortunate confusion in Craya's seminal paper, where the Lagrange 

[dynamic wave] celerity is described as governed by gravity [sic] and inertia. The role 

of the several forces acting in unsteady flow in open channels (gravity, friction, 

pressure gradient, and inertia) has been clarified by Ponce and Simons (1977), who 

calculated the F = 2, that is, V = 1, all waves propagate at the same celerity, 

regardless of size.  

To reiterate, the Vedernikov-Craya criterion states that roll waves will form in 

an open channel under the following condition, in terms of absolute celerities: 

 



   

  
       

 
  

(14) 

In terms of relative celerities, roll waves will form when the relative Seddon 

celerity is greater than or equal to the relative Lagrange celerity: 

            
 
  (15) 

THE VEDERNIKOV NUMBER IN CHOW'S OPEN-CHANNEL HYDRAULICS 

In Section 8-8, Instability of Uniform Flow, of Open-channel hydraulics, Ven 

Te Chow describes a criterion "which may be called the Vedernikov number" as 

follows: 

   
   

    
 
 

 
(16) 

in which x = exponent of hydraulic radius R in the general velocity formula u = f(R), 

defined as follows: 

 
  

   

   
 

(17) 

in which b = exponent of Reynolds number R in the frictional power law f = a R e
-b

, 

in which f = Darcy-Weisbach friction factor. The value of b varies in the range 0-1, 

with b = 0 applicable to turbulent Chezy friction, b = 1/5 to turbulent Manning 

friction, and b = 1 to laminar flow. Thus, x = 1/2 for the Chezy formula, x = 2/3 for 

the Manning formula, and x = 2 for laminar flow.  

The parameter γ is a cross-sectional shape factor defined as follows: 

 
     

  

  
 

(18) 

in which R = hydraulic radius; P = wetted perimeter; and A = flow area. The shape 

factor γ varies in the range 0-1. The value γ = 1 applies to a hydraulically wide 

channel, for which the wetted perimeter P is constant, and γ = 0 applies to an 

inherently stable channel, for which the hydraulic radius R is constant. To prove these 

assertions, define a power function relating wetted perimeter and flow area: 

      
   (19) 

The derivative is:  dP/dA = d1 (P/A) = d1/R.  

In Eq. 18, for γ = 1,  R (dP/dA) = 0; therefore: d1 = 0, and the wetted perimeter 

is constant equal to k1 and independent of the flow area A. Thus:  γ = 1 - d1. 



Conversely, for γ = 0, if follows that d1 = 1, and, given Eq. 19, the hydraulic radius 

A/P is constant equal to 1/k1and independent of the flow area A.  

With Eq. 8, Eq. 16 reduces to (Chow 1959): 

       (20) 

which implies that the Vedernikov number is a function of the Froude number, a 

statement which is strictly not correct. The examination of Eqs. 8 to 10 reveals that 

the Froude and Vedernikov numbers are totally independent of each other. The 

confusion arises only circumstantially because the relative kinematic wave celerity v 

is expressed in terms of the mean velocity u (Eq. 6).  

Given Eq. 10, it follows that: 

        (21) 

which states that β contains information on both friction (x) and cross-sectional shape 

(γ). Table 2 summarized the relations between b, x, γ, d1 and β for a wide range of 

flow conditions. 

Table 2.  Variation of β, the exponent of the discharge-flow area rating 

[1] [2] [3] [4] [5] [6] [7] [8] 

Cross-

sectional 

shape 

Friction 

type 

b 

[In Eq. 

16] 

x 

[Eq. 

16] 

  

[Eq. 

17] 

   

[In Eq. 

18] 

  1 

[Eq. 

20] 

  

[In Eq. 

4] 

Hydraulically 

wide 
Laminar 1 2 1 0 2 3 

Hydraulically 

wide 

Manning 1/5 2/3 1 0 2/3 5/3 

Chezy 0 1/2 1 0 1/2 3/2 

Triangular 
Manning 1/5 2/3 1/2 1/2 1/3 4/3 

Chezy 0 1/2 12 1/2 1/4 5/4 

Inherently 

stable 

Manning 1/5 2/3 0 1 0 1 

Chezy 0 1/2 0 1 0 1 

The question remains as to why Chow placed the Vedernikov number in 

Chapter 8 of his book, as the last section [Section 8-8] of the chapter entitled 

"Theoretical Concepts ..." instead of placing it in Chapter 1, together with the Froude 

number and other fundamental concepts. This fact may have contributed to the 

relative obscurity of the Vedernikov number, which persists to this date despite the 

passing of more than half a century. Many practicing engineers, while they 

acknowledge having consulted the book many times, have yet to discover the 

Vedernikov number (Ponce 2003).  

 



CONCLUDING REMARKS  

The concepts of Froude and Vedernikov numbers are reviewed on the 

occasion of the 50th anniversary of the publication of Ven Te Chow's Handbook of 

Hydrology. While the Froude number (F) is standard fare in hydraulic engineering 

practice, the Vedernikov number (V) remains to be recognized by many practicing 

engineers. It is surmised here that this may be due in part to the fact that Chow placed 

the Vedernikov number in Chapter 8 of his book, instead of placing it in Chapter 1, 

together with the Froude number.  

A comprehensive description of the variation of β, the altogether important 

exponent of the discharge-flow area rating (β - 1 = V/F), is accomplished here to 

recognize and honor the contributions of Professor Ven Te Chow to the hydraulic 

engineering profession.  
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