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Discussion

Roll waves simulation using shallow water equations and weighted
average flux method
By B. ZANUTTIGH and A. LAMBERTI, Journal of Hydraulic Research, Volume 40, 2002, Issue 5, pp. 610–622

Discusser:
MONTUORI, C., Full Professor (retired), University of Napoli Federico II, DIIA, Via Claudio 21, I-80125 Napoli, Italy

The roll waves phenomenon, noticed and described since Maw
(1884), has represented an object of interest for researchers and
technicians for more than one century. Today it is still draw-
ing the scientists’ attention. The numerical simulation developed
by the Authors and the following comparison with the exper-
imental results published by R. Brock in the years 1967 and
1969 are a contribution of great interest for the knowledge of the
phenomenon. It is a further example of the remarkable results
that today it is possible to obtain by proper choice of a specific
computational scheme. The simulation method could be a useful
instrument for the systematic study of these waves, typical of
very steep channel flows.

The writer attended to the roll waves problem many years
ago. In an article quoted by the Authors [18] published in Italian
in 1961 and translated into English in 1965 (Montuori, 1965),
the writer showed that the roll waves appearance or their lack in
very steep channels flows could be explained through the high-
velocity flow instability theory, if one takes into account the
channel length, and he suggested a semi-empirical criterion to
predict the roll waves formation. This criterion was deduced by
elaborating the results ofVedernikovet al. (1947) theory (Powell,
1948), developed in 1947 on the growth of small perturbations in
an open-channel flow, and a comparison of the consequent the-
oretical result with many laboratory and field tests. The writer,
thus, showed that the knowledge both of Vedernikov number,
V = (2m/p)MFr (Vedernikovet al., 1947) and of the dimen-
sionless quantitygSx/u2

0 (u0 and Fr, velocity and Froude number
of an ideal uniform flow;x, distance from the channel inlet;m

andp, exponents of a monomial formula of the uniform flow;M,
shape factor) allowed to foresee, with enough approximation to
the technical applications, if clearly noticeable roll waves could
develop in a channel reach. In fact, the position of the experimen-
tal points in a diagram (gSL/u2

0, V ) (L, channel length) clearly
showed that the roll waves presence is either connected with the
increase ofV or with the increase ofgSL/U2

0 .
Besides, after having drawn a curve representing an approx-

imate relation deduced from a further theoretical development,
it was noticed that this curve divided the first quadrant of the
diagram into two parts. The points corresponding to flows with-
out roll waves were positioned between the curve and the two

coordinate axes. Instead, from the opposite side of the curve,
there were all the points corresponding to flows with roll waves,
while, in the proximity of the curve, there were also a few points
representing some flows where roll waves were not noted. In 1963
(Montuori, 1963) this comparison was extended, with satisfac-
tory results, to further experimental data collected from various
sources.

The two dimensionless quantitiesgSx/u2
0 andV do not take

into account neither the boundary layer development near the
channel inlet, nor the flow acceleration in the initial reach of
the channel. However, they appeared significant to predict the
presence of roll waves.

Afterward, in a particular range of cases, they appeared also
linked to the roll waves maximum depths.

In fact, in 1984, the writer, considering the previous conclu-
sions, made a further elaboration using the experimental data
published by R.R. Brock in 1969 [5]. The results of this elab-
oration were published only in Italian, in the Proceedings of a
seminar organised at Bressanone, Italy (Montuori, 1984). More
precisely, the values noticed by Brock were used to calculate the
values of the two dimensionless quantitiesgSx/u2

0 andV perti-
nent to distancesx where the flow maximum depthhmaxexceeded
of a prefixed rate the uniform flow depthh0; the data were
deduced by the reading of Brock’s graphics. Six values of the ratio
hmax/h0 were considered, in the range 1, 1 ≤ hmax/h0 ≤ 2. The
points obtained in the diagram (gSx/u2

0, V ) for each value of ratio
hmax/h0 were fitted interpolating a specified empirical curve. The
diagram which appeared in (Montuori, 1984) is reproduced in
Fig. 1m.

Thorsky and Haggman (1970) made a similar elaboration.
These Authors used a diagram with the same ordinateV ,
but with the abscissaU2

0/gSx , which was the inverse of
the previous one; they only considered the results for which
hmax/h0 = 1, 1. The writer made the same use of the abscissa
U2

0/gSx, Thorsky’s abscissa, instead of the original abscissa
gSx/u2

0: obviously, even in this way it was possible to interpo-
late the experimental points by curves with parametershmax/h0

(Fig. 2m).
Therefore, in Brock’s experimental range, the two dimension-

less quantitiesgSx/u2
0 and V are connected together through

103



104 Zanuttigh and Lamberti

Figure 1m Diagram (gSx/u2
0, V ) (after Montuori, 1984).

Figure 2m Diagram (u2
0/gSx, V ) (after Montuori, 1984).

some links only depending on the maximum depthh′
max =

hmax/h0 of roll waves.
The computational method developed by the Authors could

be the way to check if similar links, as those found by the writer
in 1984, exist outside Brock’s experimental range. In this case,
the diagram (gSx/u2

0, V ) could be used to predict the maximum
heights of the roll waves in a wider range.
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Reply by the Authors

We thank Prof. Montuori for his interesting discussion and try to
answer the points he raises. These points are in synthesis:

• Are Vedernikov numberV and the non-dimensional abscissa
along the channelgSx/u2

0 the only independent variables,
which all the other non-dimensional variables, ashmax/h0,
depend on?

• Can the numerical code extend the range of conditions in which
the results presented in Figs 1m and 2m are checked, and has
this been done?

The first point requires a dimensional analysis of the case of a
stream in a uniform channel potentially developing roll waves as
a consequence of instability of the uniform flow.

We can think to impose independently:

• gravity accelerationg;
• water depth and velocityh0, u0 of the base uniform flow

(typical values of boundary conditions);
• in a given channel friction (and channel) slope would depend

on wall roughness and/or viscosity, that we can fix at our
choice; as a substitute of these we may assume that slopeS is
an independent parameter;

• fluid densityρ;
• some perturbation has to be imposed, normally at the boundary,

in order to trigger instability, letε be the very small value of
this perturbation relative to the base flow characteristics;

• position along the channelx and running timet are also
independent variables.

Let {h0, u0, ρ} be a dimensional base for these variables. Any
non-dimensional dependent variable should depend on the result-
ing non dimensional independent variables:{

gh0/u
2
0 ≡ Fr−2, S, ε, x/h0, tu0/h0

}
(1)

Some reductions are possible: if dependent variables are statistics
evaluated over time, the non-dimensional time can be cancelled
from the set; if the initial perturbation is constant (practically
zero) or is represented by a qualitative variable (rough or smooth
inlet, for instance, were used by Brock). The most reduced set of
independent variable for a general case is therefore:

{Fr, S, x/h0} (2)
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This is the scaling rule used by Brock, for instance; in these tests,
channel roughness remaining constant, Froude number and slope
are related and only one of them can be used.

If our attention is focused on the development of roll waves, we
can follow the approach of Liggett (1975) modified by Julien and
Hartley (1985, 1986) in order to account for strongly non-uniform
velocity distribution over the section.

Unstable waves do propagate downstream with celerity

C = ū + c0 = βmū +
√

gh + βm(βm − 1)ū2 ≈ ū +√
gh

(3)

whereū is the mean velocity over the section (vertical),βm is the
momentum correction factor (the last expression is the asymptotic
value for almost uniform velocity distribution)

βm = 1

ū2A

∫
section

u2 dA ≈ 1 (4)

c0 is the celerity of waves relative to fluid mass and is proportional
to average velocity times a factor dependent on Froude number
and momentum coefficient

c0

u
= βm − 1 +

√
Fr−2 + βm(βm − 1) ≈ Fr−1 (5)

The rate of increase/decrease of perturbations along the chan-
nel is described by Liggett (1975) with the assumptionβm = 1
and by Julien and Hartley (1986) relaxing this assumption. The
perturbation of the free surface elevation satisfy equation

∂2h′

∂ξ∂η
− β

(
∂h′

∂η

)2

+ γ
∂h′

∂η
= 0 (6)

whereξ ≡ x is the usual longitudinal coordinate andη is a lon-
gitudinal coordinate relative to an origin moving with the wave,
whose solution is

∂h′

∂η
= ε

βε/γ + exp(γ ξ)
(7)

The solution shows that the steepness of the perturbation
increases along the channel ifγ is negative starting from the initial
valueε the length scale of this rate of increase is for rectangular
channel and laminar flow

γ = S

h
Fr−2

(
1 − 2

c0

ū
Fr2
) [

2 + c0

ū
+
(c0

ū

)−1
Fr−2

]−1

(8)

For a different flow regime (Liggett, 1975) or a different channel
only the numerical coefficients in the above formula do change.

Unstable conditions are characterized by negative values of
the term in round brackets.

These equations shows that, as far as the evolution of perturba-
tions is concerned, if Fr is one of the parameters, the longitudinal
co-ordinateξ ≡ x, stream depthh and slopeS appears only
through the combinationxS/h, answering from a theoretical
point of view to the first point raised.

Actually this argument fails quite early, since as soon as the
denominator of Eq. (7) vanishes a bore is formed and origi-
nal equation should be adapted. If this remains true above this
limit cannot be proved experimentally only from Brock results,
because roughness was not varied in these experiments.

A possible explanation is the following. If we assume that
propagation can be described by shallow water equations, that
for the sake of simplicity we write in the mass and head balance
form (or momentum balance form) for a prismatic channel of
constant slope angleθ

∂A

∂t
+ ∂

∂x
(ūA) = 0

1

g

∂ū

∂t
+ ∂

∂x

(
h cosθ + ū2

2g

)
+ τb

ρgR
− sinθ = 0

(9)

that can be written in the form

∂

∂t
(ρAū) + ∂

∂x
(ρg cosθ · hGA + ρū2A)

+ τ̄bP − ρg sinθA = 0

First we can rescale

• x andt into x ′ = x sinθ/h0 andt ′ = tu0 sinθ/h0,
• A andū into A′ = A/A0 andu′ = ū/u0,

where subscript ‘0’ denotes values for a stationary and uniform
base flow.

Then, we cancel in the resulting equations the constant factors,
including sinθ (or ρg sinθA) appearing in all but one term.

Finally, we assume that the resistance relation has the mono-
mial expression

τb

τbo
=
(

ū

u0

)n (
R

R0

)−m

so Eq. (9) can be written as


∂A′

∂t ′
+ ∂

∂x ′ (u
′A′) = 0

Fr20
∂u′

∂t ′
+ ∂

∂x ′

(
h′ cosθ + Fr20

u
′2

2

)

+u′nR′−(m+1) − 1 = 0

(10)

or also in the form

Fr20
∂

∂t ′
(u′A′) + ∂

∂x ′ (cosθ · h′
GA′ + u′2A′)

+ A′(u′nR′−(m+1) − 1) = 0

The solution of this system (10) depends only on parameters Fr0,
n, m and cosθ , i.e. if slope is not so great that cosθ ∼= 1 and flow
is everywhere either laminar or turbulent (n andm constant for
the case) the scaled solution depends only on Fr0 and scaled inde-
pendent variablex ′ andt ′, beside on scaled boundary condition.

Our numerical simulations of Brock’s (1970) experiments,
based on shallow water equations, satisfy this condition as it
is shown in Fig. 1 which represent the crest to normal depth ratio
hmax/hn along the channel lengthx adimensionalized by normal
flow depth and channel slopeS.

We repeated the simulations for the cases of Fr= 3.45, 3.71
increasing channel bed roughness (from 10−5 to 10−4 m) and
slope (from 5 to 10%) and maintaining Brock’s flow depth of the
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Figure 1 Increase rate of relative crest heighthmax/hn versusxS/hn

for the simulations of Brock’s tests reported in Zanuttigh and Lamberti
(2002).

base uniform flow. Results are shown in Fig. 2: wave crests reach
higher values and wave overtaking phase begin more downstream
the channel inlet than in the corresponding cases reported with
the same symbols in Fig. 1.

Based on Figs 1 and 2 we can therefore conclude that the
first point as presented by us is theoretically proven if channel
steepness is moderate and shallow water conditions are satisfied,
whereas further simulations confirm the proof numerically.

Figure 2 Increase rate of relative crest height for Fr= 3.45, 3.71;
roughness 10−4, slope 10%.
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