SOLUTION.-
Use ONLINE CHANNEL 05 to determine normal depth and velocity, and critical depth and
velocity, in upstream and downstream channels.
The results of ONLINE CHANNEL 05 for the upstream channel are:
1. Critical depth = 3.364 m
2. Critical velocity = 5.571 m/s
3. Normal depth = 10.098 m
4. Normal velocity = 1.648 m/s
5. Normal Froude number = 0.179
The results of ONLINE CHANNEL 05 for the downstream channel are:
1. Critical depth = 3.364 m
2. Critical velocity = 5.571 m/s
3. Normal depth = 2.669 m
4. Normal velocity = 7.113 m/s
5. Normal Froude number = 1.425
Upstream channel:
Sc = n2Vc2 / Rc4/3
yc= 3.364
Ac = (b + zyc) yc = 359.033
Pc = b + 2(1 + z2)1/2 yc = 115.044
Rc = Ac / Pc = 3.1208
Sc = n2Vc2 / Rc4/3 = (0.025)2 (5.57)2 / (3.1208)4/3 = 0.00425
Use ONLINE CHANNEL 04: Sc = 0.00425.
Downstream channel:
Sc = n2Vc2 / Rc4/3
yc= 3.364
Ac = (b + zyc) yc = 359.033
Pc = b + 2(1 + z2)1/2 yc = 115.044
Rc = Ac / Pc = 3.1208
Sc = n2Vc2 / Rc4/3 = (0.045)2 (5.57)2 / (3.1208)4/3 = 0.0138
Use ONLINE CHANNEL 04: Sc = 0.0138.
Flow area: A = (b + zy) y (1)
Wetted perimeter: P = b + 2(1 + z2)1/2 y (2)
Hydraulic radius: R = A / P (3)
Friction slope: Sf = n2V2 / R4/3 (4)
Average (reach) friction slope: Sf ave = 0.5 ( Sf 1 + Sf 2 ) (5)
Increment along the channel ΔL:
Fig. 1 Definition sketch for calculation of channel length increment ΔL.
|
Table 1. Calculation of backwater curve, U/S channel, M2 curve, So = 0.0001. | |||||||||||
[x] = columns; (y) = equations | |||||||||||
[1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | [12] |
y | A | V | V2/(2g) | H | P | R | Sf | Sf ave | ΔH | ΔL | ∑L |
y | (1) | Q/[2] | [3]2/(2g) | [1] + [4] | (2) | (3) | (4) | average slope (5) | H2 - H1 | change in L (6) | cum ΔL |
3.364 | 359.033 | 5.570 | 1.581 | 4.945 | 115.044 | 3.1208 | 0.00425 | --- | --- | --- | 0 |
4.000 | 432.000 | 4.630 | 1.092 | 5.092 | 117.888 | 3.664 | 0.00237 | 0.00331 | 0.147 | -45.794 | -45.794 |
5.000 | 550.000 | 3.636 | 0.674 | 5.674 | 122.360 | 4.495 | 0.00111 | 0.00174 | 0.528 | -354.878 | -400.672 |
6.000 | 672.000 | 2.976 | 0.451 | 6.451 | 126.833 | 5.298 | 0.00060 | 0.000855 | 0.777 | -1029.139 | -1429.811 |
7.000 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
8.000 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
9.000 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
10.000 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
10.097 | ? | ? | ? | ? | ? | ? | 0.0001 | ? | ? | ? | ∞ |
ANSWER: The flow depth is 6 m at a distance of 1429.811 m upstream from the brink.
|
Table 2. Calculation of backwater curve, D/S channel, S2 curve, So = 0.03. | |||||||||||
[x] = columns; (y) = equations | |||||||||||
[1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | [12] |
y | A | V | V2/(2g) | H | P | R | Sf | Sf ave | ΔH | ΔL | ∑L |
y | (1) | Q/[2] | [3]2/(2g) | [1] + [4] | (2) | (3) | (4) | average slope (5) | H2 - H1 | change in L (6) | cum ΔL |
3.364 | 359.033 | 5.570 | 1.581 | 4.945 | 115.044 | 3.1208 | 0.0138 | --- | --- | --- | 0 |
3.3 | 351.780 | 5.685 | 1.647 | 4.9475 | 114.758 | 3.0654 | 0.0147 | 0.01425 | 0.002 | 0.127 | 0.127 |
3.2 | 340.48 | 5.874 | 1.759 | 4.9586 | 114.311 | 2.979 | 0.0163 | 0.0155 | 0.0111 | 0.765 | 0.892 |
3.1 | 329.22 | 6.075 | 1.881 | 4.981 | 113.864 | 2.891 | 0.0181 | 0.0172 | 0.0224 | 1.750 | 2.642 |
3.0 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
2.9 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
2.8 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
2.7 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
2.669 | ? | ? | ? | ? | ? | ? | 0.03 | ? | ? | ? | ∞ |
ANSWER: The flow depth is 3.1 m at a distance of 2.642 m downstream from the brink. |
COMMENTS:
|
|