CIV E 632-COMPUTATIONAL HYDRAULICS AND HYDROLOGY
SPRING 2012
INSTRUCTOR:  DR. V. M. PONCE
TEXT:  Online syllabus
   No.          Description          [Paper No.]          (Week)
  1. Shallow-wave propagation in open-channel flow    [1, 2, 3, 4, 5]   (1,2)
  2. Muskingum-Cunge method     [6, 7, 8, 9, 10]   (3)
  3. Kinematic waves     [11, 12, 13, 14]   (4)
  4. Diffusion waves     [15, 16, 17, 18, 19, 20]   (5,6)
  5. Dynamic waves     [21, 22]   (7)
  6. Roll waves     [23, 24, 25]   (9)
  7. Numerical modeling     [26, 27, 28, 29, 30]   (10-11)
  8. Applications:    (12-15)
    • Watershed routing    [31, 32]
    • Sediment routing    [33, 34]
    • Dam-breach modeling    [35]
    • Two-dimensional modeling     [36]
    • Groundwater modeling     [37]
PAPERS

  1. Shallow wave propagation in open-channel flow   (31003)   (41008)
  2. Applicability of kinematic and diffusion models  (31004)
  3. On kinematic waves: Flood movement in long rivers  (45001)
  4. On the subject of a flood propagation computation method  (45002)
  5. Mathematical simulation of surface flow  (45003)
  6. Muskingum-Cunge method with variable parameters  (33009)  (31006)
  7. Accuracy criteria in diffusion routing  (31017)
  8. Analytical verification of Muskingum-Cunge routing  (31046)
  9. Simplified Muskingum routing equation  (31008)
  10. Variable-parameter Muskingum-Cunge method revisited  (33009)  (31039)
  11. Nature of wave attenuation in open-channel flow  (31016)
  12. The kinematic wave controversy  (31030)
  13. Kinematic wave modeling: Where do we go from here?  (31032)
  14. Kinematic shock: Sensitivity analysis  (31020)
  15. Diffusion wave modeling of catchment dynamics  (31022)
  16. New perspective on the Vedernikov number  (31031)
  17. New perspective on the convection-diffusion-dispersion equation  (31038)
  18. Generalized diffusion wave equation with inertial effects   (33009)   (31029)
  19. Dam-breach flood wave propagation using dimensionless parameters  (31063)  (79005)
  20. Linear reservoirs and numerical diffusion   (33008)   (31013)
  21. Modeling looped ratings in Muskingum-Cunge routing   (33009)   (31060)
  22. Time of opening of irrigation canal gates  (31053)
  23. The criterion for the possibility of roll-wave formation  (45006)
  24. Verification of theory of roll-wave formation  (31033)
  25. Effect of cross-sectional shape on free-surface instability  (31037)
  26. A study of the numerical solution of partial differential equations  (45004)
  27. Unconditional stability in convection computations  (31011)
  28. Convergence of four-point implicit water wave models  (31005)
  29. Numerical properties of implicit four-point finite difference equations of unsteady flow  (49003)
  30. The convergence of implicit bed transient models  (31010)
  31. Parking-lot storage modeling using diffusion waves  (31054)
  32. Large basin deterministic hydrology: A case study  (31021)
  33. Celerity of transient bed profiles  (31018)
  34. Modeling alluvial channel bed transients  (31009)
  35. Modeling gradual dam breaches  (31014)
  36. Modeling circulation in depth-averaged flow  (31015)
  37. A convergent explicit groundwater model  (35001)
CALENDAR

Week No. 6:   Topic selection deadline (Monday, February 27, 1900)

Week No. 8:   Midterm exam (Monday, March 12, 1900-2015)

Week No. 10:   Preliminary oral presentations (Monday, April 2, 1900-2015)

Week No. 15:   Final oral presentations (Monday and Wednesday, May 7-9, 1900-2015)

Week No. 15:   Papers due (Wednesday, May 9, 1900)

Week No. 16:   Final exam (Wednesday, May 16, 1900-2100).

INSTRUCTIONS

OFFICE HOURS: MW 1100-1200; MW 2015-2115 (PS231-B).

GRADING POLICY:   Homework Set (25%), Midterm (25%), Project (25%), Final (25%).

HOMEWORK SET:   Homework is due at the start of the class period, one week after date of assignment. There is no late homework.

PROJECT:   The project will consist of individual work on a topic mutually agreed with the instructor. A written paper and two oral presentations [preliminary (30% progress) and final] (10th and 15th week, respectively) are an integral part of the experience. The paper should be of professional quality and its length should not be more than 15 pages, including tables and figures. Text should be double-spaced. The oral presentations should be Power Point or web-based.