See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/250003322

A Review of the Application of the MUSLE Model Worldwide

Article *in* Hydrological Sciences Journal/Journal des Sciences Hydrologiques · February 2014 DOI: 10.1080/02626667.2013.866239

Some of the authors of this publication are also working on these related projects:

Selection of Representative Watersheds in Homogenous Regions of Iran View project

Investigation the Effect of Sand and Gravel Mining on Bed Sediment Morphometric Characteristics (Case Study: Zaremrood River, Mazandaran Province) View project

This article was downloaded by: [Dr Abdulvahed Khaledi Darvishan] On: 26 December 2013, At: 07:06 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Hydrological Sciences Journal

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/thsj20</u>

A review of the application of the MUSLE model worldwide

S.H.R. Sadeghi^a, L. Gholami^a, A. Khaledi Darvishan^a & P. Saeidi^a

^a Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Mazandaran, Iran Published online: 20 Dec 2013.

To cite this article: S.H.R. Sadeghi, L. Gholami, A. Khaledi Darvishan & P. Saeidi, Hydrological Sciences Journal (2013): A review of the application of the MUSLE model worldwide, Hydrological Sciences Journal, DOI: <u>10.1080/02626667.2013.866239</u>

To link to this article: <u>http://dx.doi.org/10.1080/02626667.2013.866239</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

S.H.R. Sadeghi, L. Gholami, A. Khaledi Darvishan and P. Saeidi

Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Mazandaran, Iran

sadeghi@modares.ac.ir

Received 31 December 2012; accepted 16 April 2013; open for discussion until 1 August 2014

Editor Z.W. Kundzewicz

Citation Sadeghi, S.H.R., *et al.*, 2014. A review of the application of the MUSLE model worldwide. *Hydrological Sciences Journal*, 59 (2), 1–11.

Abstract The sediment yield model of the MUSLE (modified universal soil loss equation) is applied extensively throughout the world, but different performances have been reported of its success relative to measured data. A review of all the available literature is presented to assess the application of the model under different conditions and, ultimately, make a comprehensive judgement on the different aspects to allow readers to adjust their further research. A review of 49 papers showed the variable accuracy of the model, which depends on the manner of calculation and determination of the input and output, and the study time and space scales. There were differences in land use, in correspondence of the physiographic characteristics with those of the original conditions of model development, and even in the experience of researchers in applying the model. The results also show the need to consider the original application of the model, as proposed by its developers, to achieve comparable results.

Key words MUSLE model; sediment yield; storm event; soil erosion models; model goodness of fit

Revue de l'application du modèle MUSLE à travers monde

Résumé Le modèle de production de sédiments de l'équation universelle modifiée des pertes de terre (Modified Universal Soil Loss Equation—MUSLE) est largement appliqué dans le monde entier, mais des performances variées ont été signalées quant à son applicabilité pour les objectifs proposés. Nous présentons une revue de toute la littérature disponible pour évaluer l'application du modèle dans des conditions différentes et, à terme, pour porter un jugement complet sur les différents aspects de cette application, de manière à permettre aux lecteurs d'ajuster leurs recherches futures. L'examen de plus de 49 articles a confirmé la précision extrêmement variable du modèle en fonction du mode de calcul et de détermination des entrées et sorties, et des échelles temporelles et spatiales d'étude. Des différences existaient dans l'occupation des sols, la correspondance entre les caractéristiques physiographique d'étude et celles utilisées lors du développement du modèle, et même dans l'expérience des chercheurs dans l'application du modèle. Les résultats montrent aussi la nécessité de prendre en considération les conditions originales d'application du modèle, tel que cela est suggéré par ses développeurs, afin d'obtenir des résultats comparables.

Mots clefs modèle MUSLE; apport en sédiments; orage; modèles d'érosion des sols; qualité d'ajustement du modèle

INTRODUCTION

Accelerated soil erosion has detrimental effects on productivity, income distribution and the environment at national and global scales. Erosion phenomena and sediment transport in channels and rivers are the most complex issues in a watershed. The heavy erosion and continuous transmission of sediment is not only the cause of an imbalance of natural rivers and streams, but also the cause of change in the river channel and sediment accumulation behind dams reducing their storage volumes.

The rate of soil erosion has dramatically increased during recent decades and globally has been reported as 0.5, 0.75, 1 and 2.2×10^9 t in 1951, 1961, 1971 and 1993, respectively (Hosseini and Ghorbani 2005). However, not only are these figures unreliable, but they need to be updated frequently. Consequently, regular estimation of soil erosion or its consequences, such as sediment yield, is a

must, which basically can be realized by applying appropriate models. Soil erosion process models have generally been developed in particular places in the world and exported to other parts, and some have been extensively applied. Therefore, assessment of their applicability and soundness is important for proper calibration of models, or for drawing necessary conclusions and designating true strategies.

Among soil erosion models, the universal soil loss equation (USLE) (Wischmeier and Smith 1965, 1978) is the most widely used, and misused, soil loss estimation equation in the world (Kinnell 2001). The USLE was originally applied to the prediction of soil losses from agriculture in the USA, in order to preserve soil resources, but has been extended for use in numerous countries (Kinnell 2001). This model was obtained for soil loss estimation based on 10 000 plot-years of data using field experiments under natural or simulated rainfalls in the USA (Kinnell 2001). The USLE, with some modifications and revisions, is still a useful tool in watershed management. A large number of existing erosion and sediment transport models are based on the USLE (Sadeghi et al. 2007a). Their application is, however, limited to the environmental circumstances from which the USLE was generated (Aksoy and Kavvas 2005). Since the USLE was developed for estimation of the annual soil loss from small plots of an area of some 40 m^2 , its application to individual storm events and large areas leads to large errors (Hann et al. 1994, Sadeghi 2004, Sadeghi and Mahdavi 2004, Kinnell 2005, Chang 2006, Sadeghi et al. 2007a), but its accuracy increases if it is coupled with a hydrologic rainfallexcess model (Novotny and Olem 1994, Sadeghi and Mahdavi 2004). One problem with the USLE model is that there is no direct consideration of runoff, although erosion depends on sediment being discharged with flow, which varies with runoff and sediment concentration (Kinnell 2005). Yet, Banasik (1985) showed that application of the USLE with a sediment delivery ratio (SDR) is possible for computing sediment yield from small watersheds in Poland.

However, using the SDR in conjunction with watershed gross erosion, estimated by the soil erosion model as an estimation method, is tedious and inadequate if one is interested in single storms. Unless one is already available, developing an SDR model may involve parameters similar to those of the USLE and other models that are used to estimate gross erosion, a duplicate step and time-consuming process. Stream sediment is affected by the carrying capacity and deposition processes of overland flow. However, the storm event factor used by the USLE often fails to account for the effective rainfall that generates surface runoff. Also, the SDR varies with storms; the assumption of a constant SDR adds another source of error to the estimates (Williams 1977, Chang 2006, Sadeghi et al. 2007a, 2008). An improved erosivity factor was therefore introduced by Williams (1975, 1977) and Foster et al. (1977) to also take into account the runoff shear stress effect in terms of the product of runoff volume and peak discharge, on soil detachment for single storms. The approach of Williams and Berndt (1977) in developing a modified version of the USLE was to derive a sediment yield estimation model based on runoff characteristics as the best single indicator for storm-event sediment yield prediction at the watershed outlet (Williams 1975, Beasley et al. 1980, Sadeghi and Mahdavi 2004, Hrissanthou 2005, Mishra et al. 2006, Sadeghi et al. 2007a, 2007b, Mishra and Ravibabu 2009) and some factors affecting soil erosion. Williams (1975) showed that the estimate of stream sediment yield for individual storms could be simplified by using the USLE with its rainfall factor (R) replaced by a runoff factor. He developed the following revised form of the USLE using 778 storm-runoff events collected from 18 small watersheds, with areas varying from 15 to 1500 ha, slopes from 0.9 to 5.9% and slope lengths of 78.64 to 173.74 m (Williams and Berndt 1977, Hann et al. 1994) and called it the modified universal soil loss equation (MUSLE). The MUSLE was given in the following general form:

$$S_y = a(Q'q_p)^b K \ L \ S \ C \ P \tag{1}$$

where S_y is sediment yield (in t) on a storm basis and for the entire study watershed, Q is volume of runoff (in m³), q_p is peak flow rate (in m³ s⁻¹) and K, L, S, Cand P are, respectively, the soil erodibility (in t ha h ha⁻¹ MJ⁻¹ mm⁻¹), slope length, slope steepness, crop management and soil erosion control practice factors similar to the USLE model, and a and b are location coefficients. For the areas where the equation was developed, a and b were 11.8 and 0.56, respectively, for metric system units. The optimization technique suggested by DeCoursey and Snyder (1969) was used for the development of the prediction equation and designating a and b. A disagreement with the principle of dimensional analysis of the MUSLE has been explained by Cardei (2010).

The MUSLE has been applied to many different watersheds around the world and for different

purposes (Asokan 1981, Das 1982, Nicks et al. 1994, Banasik and Walling 1996, Kinnell and Riss 1998, Erskine et al. 2002, Khajehie et al. 2002, Rezaiifard al. 2002, Kandrika and Dwivedi et 2003. Cambazoglu and Gogos 2004, Fontes et al. 2004, Sadeghi 2004, Sarkhosh et al. 2004, Kandrika and Venkataratnam 2005, Varvani et al. 2006, Sadeghi et al. 2007a, 2007b, 2008, Khaledi Darvishan et al. 2009, Zhang et al. 2009, Lpez-Tarazn et al. 2012), and this model was modified in some cases. Because the MUSLE model was produced for specific conditions, its application without calibration has resulted in huge errors. Therefore, the present review was made to evaluate the application conditions and methods used to determine the MUSLE model variables in previous research.

MATERIALS AND METHODS

To review the application and the performance of the MUSLE model across the world, the available research records were first collected from related conference articles, journal papers and other scientific documents. Based on the available information in the documents, the details were evaluated as to the methodology used in determining the different input variables that appear in equation (1), namely runoff volume and peak, soil erodibility, topographic factors of slope steepness and length and crop management and control practice factors were extracted. The results of the model application, as well as its performance evaluation, were examined according to the available data or methodology explained in the documents, and also by reviewing the observed and estimated results. Finally, the possible alternatives for model calibration and any type of modification were evaluated to reduce the systematic or random errors.

RESULTS

The results of the review of use of the MUSLE model in many parts of the world, other details regarding the application and quality of the model calibration and the overall assessment of the research methodology described in the previous section, are summarized in Table 1.

DISCUSSION

As seen in Table 1, the MUSLE model has been used in a variety of conditions and from different perspectives. The input variables have been determined or estimated through various approaches with different levels of accuracy. It is interesting to note from Table 1 that, in some cases, no calibration or modification has been made in the MUSLE, despite the weak performances resulting from application of the MUSLE. Most of the studies were conducted in Asia, North America and Europe, with several studies also in Iran, especially during the last 10 years. The minimum, median and maximum values of the watershed areas to which the models have been applied are 0.04, 1713 and 386 000 ha, respectively. Few studies have been done in experimental plots (e.g. Golson et al. 2000, Sadeghi et al. 2008), or at the field scale (e.g. McConkey et al. 1997), so the proportions of studies at the watershed, plot and field scales are 90, 7 and 3%, respectively. The results of the review also showed that the model could not provide appropriate estimates in experimental plots, except at the Thomas research station (Golson et al. 2000). This can be attributed to the dissimilarity of conditions and governing processes between areas where the model was originally developed and the plots applied in different studies.

The results on erodibility factor showed that the values were obtained by using available information, with the help of the Wischmeier and Smith diagram in 60.87% of studies, and by using individual sampling (Cordova 1981, Smith *et al.* 1984, Jackson *et al.* 1987, Banasik *et al.* 1988, Erskine *et al.* 2002, Mahmoudzadeh *et al.* 2002, Cambazoglu and Gogos 2004, Appel *et al.* 2006, Ma 2006) and seasonal sampling (McConkey *et al.* 1997) in 13.04% and 2.17% of the studies, respectively. But the method of estimation of the erodibility factor was not given in 23.91% of studies. The results also showed that the erodibility estimation methods did not affect the accuracy of the model estimates.

The topography factor was estimated by the direct use of a topographic map at a scale of 1:50 000 in 43.48% of studies, with the help of a geographic information system (GIS) in 26.09% (Blaszczynski 2003, Chen and Mackay 2004, Basson 2005, Appel *et al.* 2006, Ma 2006, Mishra *et al.* 2006, Arekhi 2007, Jaramillo 2007, Pandey *et al.* 2009, Zhang *et al.* 2009) and by direct field measurement in 13.04% of the studies (Table 1); 14.39% of studies did not provide the methodology. The results showed that the use of GIS could improve performance of the model estimates.

The crop management and control practice factors were estimated by using existing data (34.78% of

ecember 2013
Д
20
90
;;(
t 0
a.
an
sh
Ξ
Oa
Ξ.
lec
ha
\mathbf{X}
led
/ał
ul
pq
A.
Ā
<u>v</u>
Чþ
dec
оас
'n
0 W
Ã

Table 1 Details of application of the MUSLE in different parts of the world (WMd: Wischmeier and Smith diagram; N.A.: Not provided or unavailable data or information).

model	Power			1.11		0.8		0.76	0.7	0.09			ut was ded	1.082		
Changes in	Coefficient	Unchanged	Unchanged	0.09	Unchanged	0.00278	Unchanged	0.21	1.7	0.852	Unchanged	Unchanged	Calibrated, b not provi	0.001	Unchanged	
Results -		Acceptable results $(R^2 = 80\%)$	Overestimate $(R^2 = 80\%)$	Overestimate and calibration model	Acceptable results and increased sediment after deforestation extent 126%	Acceptable results $(r = 0.87)$	Acceptable results	Overestimate and Significant difference even after calibration	Overestimate and Significant difference even after calibration	Appropriate estimates after calibration	Appropriate estimates	Insignificant relationship between estimations with observation values	Overestimate $(16-24)$ and calibration with 4 events $(R^2 = 93\%_0)$	Overestimate and calibration model $(R^2 = 99\%)$	Appropriate estimates	
variables	Crop Control ess management practice	shed	Field measurements	Field measurements		Estimated from cropping history	Available statistics and weighted average	Available statistics and weighted average	Available statistics and weighted average			Measurement	Available statistics and weighted average	Available statistics and weighted average	Measurement	
n of factors and model	Slope length Slope steepne	Measured in sub waters	Topographic Map	Topographic Map	Field measurements	Estimated from topography map	Topographic Map	Topographic Map	Topographic Map	Measuring field	Measurement	Topographic Map	Topographic Map	Topographic Map	Topographic Map	
ation and calculatio	Soil erodibility	Existing studies and WMd	Field measurements and WMd	Field measurements and WMd	Field measurements and WMd	Estimated from soils maps	Existing studies and WMd	Existing studies and WMd	Existing studies and WMd	Seasonality sample	Existing studies and WMd	Sampling	Existing studies and WMd	Existing studies and WMd	Sampling	
Methods of estima	Peak flow— Volume of runoff	SCS method	Measuring storm- wise	Average annual runoff	Measuring storm- wise	Measuring storm- wise	Measuring storm- wise	Measuring storm- wise	Measuring storm- wise	Average annual	Measuring storm- wise	Average annual	Available statistics	Available statistics	Average annual	
Reference data		N.A.	Sampling of six storm events	Existing data	1 storm event	78 events (3- year period)	6 events with 24-h periods	Statistic 20 events available	Statistic 20 events available	Storm data (31-year period)	Sampling of 6 storm events	6-28 year period	Statistic 19 events available	Statistic 30 events available	6–28-year period	
Goal		Storm-wise sediment	Storm-wise sediment	Annual sediment	Storm-wise sediment	Storm-wise sediment	Storm-wise sediment	Storm-wise sediment	Storm-wise sediment	Annual sediment	Storm-wise sediment	Annual sediment	Annual and Storm- wise sediment	Annual and Storm- wise sediment	Annual sediment	
Land use (and scale)		Forest and grassland (sub- watershed)	Pasture and forest (watershed)	Pasture (watershed)	Forest (watershed)	Forest (watershed)	Forest, agricultural and urban (watershed)	Oak forest (watershed)	Oak forest (watershed)	Rectangular fields (cropland)	Agricultural Plots (0.02 and 0.45 ha)	Forest, agricultural and pasture (watersheds)	Pasture (watershed)	Pasture (watershed)	N.A.	
Area (ha)		19 400	304	N.A.	300	3200 to 7700	400	26	106	14.58	N.A.	N.A.	2876	41 330	N.A.	
Region(s)		Elm Creek (USA)	Richland County (USA)	23 watersheds in three regions (USA)	Trazebunka (Poland)	Six small watersheds (Poland)	Southern Puerto Rico	Foothill Range Field Station (California)	Foothill Range Field Station (California)	Western Canada	Thomas— Agricultural Research Station (USA)	12 watersheds, Sydney, (Australia)	AfchhvLatyan (Iran)	Shahrchii (Iran)	Shale Sydney, (Australia)	
Researcher(s)		Williams (1977)	Cordova (1981)	Jackson <i>et al.</i> (1987)	Banasik <i>et al.</i> (1988)	Madeyski and Banasik (1989)	Santos and Canino (1997)	Epifanio <i>et al.</i> (1991)	Epifanio <i>et al.</i> (1991)	McConkey et al. (1997)	Golson <i>et al.</i> (2000)	Mahmoudzadeh et al. (2002)	Rezaiifard <i>et al.</i> (2002)	Khajehie <i>et al.</i> (2002)	Erskine <i>et al.</i> (2002)	
No.		-	7	ŝ	4	S	9	7	∞	6	10	11	12	13	14	ļ

(Continued)

currentiality State Control	of estimation and calculation	a Include of	Goal data	ule)	and see	(and see
Existing data and GISAppropriate estimatesUntunedup studieTogenphic MapFor eachNameUnduned0.01up studieFor eachanticityanticitycorrestName0.01up studiePrographic MapNambiolity carrest is andMap studies anticity andUnduned0.01up studiePrographic MapAntible statistics andUnduned0.010.01up studiePrographic MapNambiolity carrest is andUnduned0.010.01up studiesMap statistics andMap statistics and0.010.010.01up studiesMap statistics andMap statistics0.010.010.01up studiesMap statisticsMap statistics0.010.010.01up statisticsMap statisticsMap stati		ak flow—	Ρε	Pē Vc	Per Vi	Vieta Sectory under
g g utilise d WMd Topographic Map For eth, statistics and weighted weighted weighted weighted averses Available statistics and weighted averses Postentiane and Significant Understimme a	d N.A.	CS method	SC	Annual and Storm- N.A. SC wise sediment	Annual and Storm- N.A. St wise sediment	Annual and Storm- N.A. St wise sediment
age tauties Topographic Map Aniable statistics and weighted arcreage Understationand bifference Understationand MISSLC and Phony Reads Understationand Bifference Understationand Bifference </td <td>storm- Existing studies and WMd</td> <td>leasuring str wise</td> <td>tics 15 M orm ents</td> <td>Storm-wise Statistics 15 M sediment storm events</td> <td>Pasture Storm-wise Statistics 15 M (watershed) sediment storm events</td> <td>3712 Pasture Stomt-wise Statistics 15 M (watershed) sediment storm events</td>	storm- Existing studies and WMd	leasuring str wise	tics 15 M orm ents	Storm-wise Statistics 15 M sediment storm events	Pasture Storm-wise Statistics 15 M (watershed) sediment storm events	3712 Pasture Stomt-wise Statistics 15 M (watershed) sediment storm events
Inequestion Laftar's Classification Comparison MUSLE and MISLS 0.234 0.33 amples Prographic Map Available statistics and MISLS Unchanged Unchanged 1.12 amples Existing data and GIS Available statistics and MISLS Overestimate and Significant Unchanged 1.12 line Existing data and GIS Appropriate estimates of model Unchanged 1.12 line Existing data and GIS Appropriate estimates of model Unchanged 1.13 listics Map Topgraphic Appropriate estimates of model Unchanged 1.13 listics Map Topgraphic Available Accurate estimates of model Unchanged 1.13 listics Existing data and GIS Available Accurate estimates of model Unchanged 1.13 listics Institution Map Topgraphic Accurate estimates of model Unchanged 1.13 listic Institution Overstitute and Significant Unchanged Unchanged 1.13 listic Available statistis and <td>i and Existing studies and WMd 010)</td> <td>Reverse routi (Sadeghi : Singh 201</td> <td>tics 15 arm ents</td> <td>Storm-wise Statistics 15 sediment storm events</td> <td>Pasture Stom-wise Statistics 15 (watershed) sediment storm events</td> <td>3712 Pasture Storn-wise Statistics 15 (watershed) sediment storm events</td>	i and Existing studies and WMd 010)	Reverse routi (Sadeghi : Singh 201	tics 15 arm ents	Storm-wise Statistics 15 sediment storm events	Pasture Stom-wise Statistics 15 (watershed) sediment storm events	3712 Pasture Storn-wise Statistics 15 (watershed) sediment storm events
amples Topographic Map Vaniable statistics and weighted average Underestimate and Significant Unchanged 113 ling Existing data and GIS	storm- Sampling and WMd	Measuring sto wise	tic 14 ents ailable	Annual sediment Statistic 14 events available	Pasture Annual sediment Statistic 14 (watershed) events available	2460 Pasture Annual sediment Statistic 14 (watershed) events available
Ineg data and GIS Derestimate and Significant Unchanged 1.12 Ineg Exsting data and GIS Unchanged Unchanged 1.12 Exsting data and GIS Exsting and GIS Operative estimate and Significant Unchanged 1.12 Exsting data and GIS Exsting Topographic Analable Appropriate estimates of model Unchanged 1.12 tistics and WMd Map statistics Analable Correstimate and Significant Unchanged 1.23 tistics and WMd Map statistics Analable statistics and Operative estimates based valuation Unchanged 0.234 ag studies Topographic Analable statistics and Operative estimates based valuation Unchanged 0.234 ag studies Though GIS Analable statistics and Operative estimates based valuation Unchanged 0.234 ag studies Though GIS Analable statistics and Operative estimates based valuation Unchanged 0.234 ag studies Though GIS Analable statistics and Operative estimates based Unchanged 0.234 ag studies Though GIS Analable statistics and Operative estimates based Unchanged 0.234 ag studies Though GIS<	storm- 161 Samples	Measuring stu wise	m events	Annual and Storm- 8 storm events wise sediment with return period 2, 5, 10, 25, 50 and 100	Land use not Annual and Storm- 8 storm events mentioned wise sediment (42 with return watersheds) period 2, 5, 10, 25, 50 and 100	 N.A. Land use not Annual and Storm- 8 storm events mentioned wise sediment (42 with return watersheds) period 2, 5, 10, 25, 50 and 100
Ing Existing data and GIS Underestimate and Significant Unchanged Bysing data and GIS Appropriate estimates Unchanged Bysing data and GIS Appropriate estimates Unchanged Bysing data and GIS Appropriate estimates Unchanged Bysing data and GIS Map statistics Unchanged and Wudd Map statistics ocumpared Unchanged and Wudd Map statistics ocumpared Unchanged instendiate U Map statistics ocumpared Unchanged instendiate U Map statistics ocumpared Unchanged instendiate U Overestimate and Good estimates N.A. and Wudd Mud Overestimate and Good estimates N.A. ag studies Through GIS Available statistics and Overestimate and calibration Unchanged ag studies Through GIS Available statistics and Overestimate are over of midtion Unchanged ag studies Through GIS Available statistics and Overestimate statistics and Unchanged ag studies Through GIS Available statistics and Overestimate statistic Unchanged ag studies Through GIS Available statistics and	storm- N.A.	Measuring stu wise	ling in 4 ars	Storm-wise Sampling in 4] sediment years	Pasture and Storm-wise Sampling in 4 1 agricultural sediment years (watershed)	2871 Pasture and Stom-wise Sampling in 4 1 agricultural sediment years (watershed)
Existing data and GIS Appropriate estimates Unchanged able Existing studies Topographic Anailable statistics Accurate estimates of model Unchanged and WMd Map statistics and with SWAT and calculation K Unchanged initermediate Map statistics and with SWAT and calculation K NA: inite Besured in each sub watershed and GIS Overestimate and Good estimates NA: after calibration Measured in each sub watershed and GIS Overestimate and Good estimates NA: after calibration Wuth SWAT Accurate estimate and Good estimates 0:33 after calibration Unchanged of about 133 176 ton) 0:40 after calibration Unchanged weighted average of about 133 176 ton) 0:40 after calibration Wuth II events with average of about 133 176 ton) 0:40 after calibration Unchanged weighted average of about 133 176 ton) 0:40 after calibration Wuth II events with average of about 133 176 ton) 0:40 0:40 after calibration Woughted average Muth II events with average 0:40 0:40 after calibration Woughted average Available statistics and 0:40 0:40	storm- Sampling	leasuring stu wise	ling for M storm ent	Storm-wise Sampling for M sediment l storm event	Four badlands Storm-wise Sampling for M sediment l storm event	N.A. Four badlands Storm-wise Sampling for M sediment I storm event
able Existing studies Topographic and WMd Arailable statistics Accurate estimates of model with SWAT and calculation K Unchanged with SWAT and calculation K Ining Map statistics with SWAT and calculation K N.A. Ining Measured in each sub watershed and GIS Overestimate and Good estimates N.A. Ining Measured in each sub watershed and GIS Overestimate and Good estimates N.A. Ining Topographic Map Available statistics and weighted average Overestimate and calibration Unchanged 0.324 MMd Through GIS Available statistics and weighted average Overestimates based validation Unchanged 0.324 MMd Through GIS Available statistics and weighted average Appropriate estimates based Unchanged MMd Through GIS Available statistics and weighted average Appropriate estimates based Unchanged MMd Through GIS Available statistics and weighted average Appropriate estimates based Unchanged MMd Through GIS Available statistics and weighted average Appropriate estimates based Unchanged	storm- N.A.	feasuring str wise	ling for N arm ent	Annual sediment Sampling for <i>N</i> storm event	Pasture and Annual sediment Sampling for <i>N</i> agricultural storm (watershed) event	N.A. Pasture and Annual sediment Sampling for <i>N</i> agricultural storm (watershed) event
lingMeasured in each sub watershed and GISOverestimate and Good estimatesN.A.ng studiesTopographic MapAvailable statistics and weighted averageOverestimate and calibrationUnchanged0.324ng studiesThrough GISAvailable statistics and weighted averageOverestimate and calibrationUnchanged0.324ng studiesThrough GISAvailable statistics and weighted averageGood estimates based validationUnchanged0.324ng studiesThrough GISAvailable statistics and weighted averageGood estimates based validationUnchanged0.324ng studiesThrough GISAvailable statistics and weighted averageAppropriate estimates basedUnchangedng studiesThrough GISAvailable statistics and veriage relative error 49%Appropriate estimates basedUnchangedng studiesThrough GISAvailable statistics and veriage relative error 49%Appropriate estimates basedUnchangedng studiesThrough GISAvailable statistics and veriage relative error 49%Appropriate estimates basedUnchanged	tion) Available vents statistics ion)	(calibratio and 4 eve (validation	tic 19 ents	Storm-wise Statistic 19 sediment events	Pasture Storm-wise Statistic 19 (watershed) sediment events	37.2 Pasture Storm-wise Statistic 19 (watershed) sediment events
ng studies Topographic Map Available statistics and weighted average Overestimate and calibration Unchanged 0.324 d WMd WMd Weighted average (Estimated average difference of about 133 176 ton) Unchanged 0.324 ng studies Through GIS Available statistics and WMd Good estimates based validation Unchanged 0.324 a WMd With 11 events with average relative error of 7% With 11 events with average Unchanged a WMd Available statistics and WMd Appropriate estimates based Unchanged a WMd Through GIS Available statistics and veridation with 4 events with average relative error 49% Unchanged a WMd WMd Available statistics and veridation with 4 events with average relative error 49% Unchanged	storm- Sampling	feasuring stu wise	ng data M - 55 ars	Storm-wise Existing data N sediment for 55 years	Forest, Storm-wise Existing data N agricultural sediment for 55 and pasture years (watershed)	356 200 Forest, Storm-wise Existing data N agricultural sediment for 55 and pasture years (watershed)
ng studies Through GIS Available statistics and Good estimates based validation Unchanged d WMd veighted average vith 11 events with average ng studies Through GIS Available statistics and Appropriate estimates based Unchanged d WMd veighted average variable statistics and Appropriate estimates based Unchanged average relative error 49% Unchanged veighted average variable statistics and validation with 4 events with average relative error 49% Unchanged veighted average verage relative error 49% Unchanged average relative error 49% Unchanged average relative error 49% Unchanged veighted average variable statistics and VMd VMd VMd VMD VAR	storm- Existing studies and WMd	deasuring sto wise	ling of 5 North No	Storm-wise Sampling of 5 N sediment storm events	Pasture Storm-wise Sampling of 5 N (watershed) sediment storm events	175 092 Pasture Storm-wise Sampling of 5 N (watershed) sediment storm events
ng studies Through GIS Available statistics and Appropriate estimates based Unchanged d WMd veighted average validation with 4 events with average table average relative error 49% age average relative average average relative error 49% weighted average average relative error 49% average average average relative error 49% average average relative error 49% average relati	W- Existing studies nodel and WMd S	hrough KW GIUH mo help GIS	nts (3- T ar riod)	Annual sediment 7 events (3- T year period)	Agricultural Annual sediment 7 events (3- T (watershed) year period)	40 Agricultural Annual sediment 7 events (3- T (watershed) year period)
ng studies Through GIS Available statistics and Appropriate estimates based Unchanged d WMd veighted average validation with 4 events with average relative error 49%	W- Existing studies nodel and WMd S	hrough KW GIUH mo help GIS	ng data T	Annual sediment Existing data T	Forest Annual sediment Existing data T (watershed)	47 Forest Annual sediment Existing data T (watershed)
	W- Existing studies nodel and WMd S	hrough KW GIUH mo help GIS	ng data T	Annual sediment Existing data T	Forest Annual sediment Existing data T (watershed)	42 Forest Annual sediment Existing data T (watershed)

Table 1 (Continued).

December 2013
5 26
7:06
at O
n]
isha
Darv
aledi I
X
vahed
lubo
At
Ū
by
led
loac
WD
Do

Table 1 (Continued).

No.	Researcher(s)	Region(s)	Area (ha)	Land use	Goal	Reference	Methods of estimat	tion and calculation	of factors and 1	nodel varia	bles		Results	Changes in mc	odel
				(and scare)		nana	Peak flow— Volume of runoff	Soil erodibility	Slope length	Slope steepness	Crop C management p	ontrol ractice		Coefficient Po	ower
30	Chakrabarty et al. (2007)	Kistobazar (India)	N.A.	Forest and agricultural (watershed)	Storm-wise sediment	One storm event	SCS method	N.A.					Appropriate estimates	Unchanged	
31	Jaramillo (2007)	Jozeph (Spain)	4100	Forest, agricultural and urban (watershed)	Storm-wise sediment	Sampling of 12 storm events	Measuring storm- wise	Existing studies and	PMM I		Existing data and	GIS	Overestimate and provide good estimates for storms more than 10 mm	Unchanged	
32	Sadeghi <i>et al.</i> (2007a)	Matash (Iran)	0.004	Pasture plot with free grazing and hand picked	Storm-wise sediment	Sampling of 24 storm events	Measuring storm- wise	Existing studies and WMd	Measurement				Overestimate $(R^2 = 86\%)$	Unchanged	
33	Sadeghi <i>et al.</i> (2007b)	Mie (Japan)	4.8	Forest (watershed)	Storm-wise sediment	Sampling of 8 storm events	Measuring storm- wise	Existing studies and WMd	Topographic Ma	- -	Classification Laf	an (2003)	Overestimate and calibration $(R^2 = 88\%)$	0.781 60	0.63
34	Abdulla and Eshtawi (2007)	Kufranja (Jordan)	N.A.	Rural and agricultural watershed	Storm-wise sediment	Existing data	Measuring storm- wise	N.A.					Appropriate estimates	Unchanged	
35	Sadeghi <i>et al.</i> (2008)	Khosbijan (Iran)	0.004	Experimental plots, rain-fed	Storm-wise sediment	Statistic 12 events available	Measuring storm- wise	Existing studies and WMd	Topographic Ma	۰ ۹	Available statistic: weighted avera	s and ige	Insignificant relationship between estimations with observation values	Unchanged	
36	Rostamian <i>et al.</i> (2008)	Beheshtabad (Iran)	386 000	Pasture and agricultural (watershed)	Storm-wise sediment	Existing data	Measuring storm- wise	N.A.					Accurate estimates of model in SWAT model sediment (R ² = 85%)	Unchanged	
37	Pandey et al. (2009)	Karso (India)	2800	Forest and agricultural (watershed)	Storm-wise sediment	345 storm events	Measuring storm- wise	Existing studies and WMd	Using GIS		Land studies and	RS	Appropriate estimates	Unchanged	
38	Esmali and Abedini (2009)	Pole-Almasi (Iran)	103 200	N.A.	Erosion	N.A.							Acceptable results in the pixel level and inappropriate in watershed level	N.A.	
39	Khaledi Darvishan <i>et al.</i> (2009)	Chehelgazi (Iran)	27 233	Pasture and agricultural (watershed)	Storm-wise sediment	Sampling of 11 storm events	Measuring storm- wise	Existing studies and WMd	Topographic Ma	۰ ۹	Available statistics weighted avera	s and ge	Overestimate (26–66) and calibration with 3 events and relative estimation and verification errors of 29.05 and 38.40%, respectively	0.003 0.	.73
40	Zhang <i>et al.</i> (2009)	Black Hawk (USA)	2420	Agricultural (watershed)	Storm-wise sediment	Data registered 2 years storm	SCS method	Existing studies and WMd	Using GIS				Appropriate estimates	Unchanged	
41	Mishra and Ravibabu (2009)	Bhalukanala (India)	1006	Agricultural (watershed)	Storm-wise sediment	15 storm events registered	SCS method	Existing studies and WMd	Using GIS		Land studies and	RS	Appropriate estimates	Unchanged	
42	Wambua <i>et al.</i> (2009)	Njoro (Kenya)	N.A.	Land use not mentioned (watershed)	Storm-wise sediment	N.A.	Measuring storm- wise	N.A.					Appropriate estimates	Unchanged	
43	Shen <i>et al.</i> (2009)	Zhangjiachong (China)	162	Forest and agricultural (watershed)	Monthly sediment	N.A.							Overestimate $(R^2 = 67\%)$	Unchanged	

(Continued)

1 (Conti	inued).													
Researcher(s)		Region(s)	Area (ha)	Land use	Goal	Reference	Methods of estimati	ion and calculation	of factors and model	variables		Results	Changes in m	odel
						Laia	Peak flow— Volume of runoff	Soil erodibility	Slope length Slope steepn	Crop ess management	Control practice		Coefficient P	ower
Noor et al. (2010)		Kojor (Iran)	13 000	Forest (watershed)	Phosphorus losses	Sampling of 7 storm events	Measuring storm- wise	Existing studies and WMd	Existing data	Vegetation map	Available statistics and weighted average	Overestimate and calibration $(R^2 = 93\%)$	0.087 0	.34
Smith et al. (1984)	2	Oklahoma (USA)	0.04 to 122	Pastoral and agricultural	(25 watersheds)	Storm-wise sediment	Storm data for 3–5 years	Measuring storm- wise	Sampling	Measurement	Appropriate estimates		Unchanged	
Lpez-Tarazn et al. (201	5	Isábena (Spain)	44 500	Land use not mentioned (watershed)	Storm-wise sediment	Sampling	N.A.					Appropriate estimates	Unchanged	
Qiu <i>et al.</i> (20	12)	Zhifanggou watershed (China)	827	Woodland, grassland and cropland	Daily and applied for the SWAT model	1998-2008	N.A.					Under estimate of SWAT	Unchanged	
Yang <i>et al.</i> (2012)		Huaihe River watershed (China)	27 000 000	Paddy, farmland and woodland	Flood events and coupling with the Xinanjiang model	2000-2008	Xinanjiang model	Xixian soil survey	Using DEM and GIS	National land-u 2000	se map of	Appropriate estimates	Unchanged	

Downloaded by [Dr Abdulvahed Khaledi Darvishan] at 07:06 26 December 2013

studies), the Laflen and Moldenhauer (2003) classification (4.35%), GIS (26.09%) and field measurement (21.74%); 13.04% of studies did not note the method of estimation. The results also showed that considering the temporal variation of these factors could significantly improve the performance of the model, although it has been rarely taken into account. The crop management and control practice factors were estimated with the help of the available tables and generating a weighted average, and through field measurement (Table 1).

The peak flow and the volume of runoff were obtained through direct measurement of runoff on a storm-event basis (58.70% of studies), using existing data (6.52%) (Khajehie et al. 2002, Rezaiifard et al. 2002, Porabdullah 2005), applying GIS (6.52%) (Arekhi 2007), lumped runoff values (8.70%) (Jackson et al. 1987, McConkey et al. 1997, Erskine et al. 2002, Mahmoudzadeh et al. 2002), Soil Conservation Service (SCS) method the (10.87%) (Williams 1977, Blaszczynski 2003, Mishra et al. 2006, Chakrabarty et al. 2007, Zhang et al. 2009) and reverse routing (2.17%) (Sadeghi and Mahdavi 2004). In 6.52% of studies, no details were given. Our analysis also demonstrated the greater appropriateness of field and direct measurements of runoff on a storm-event basis for better performance of the model output compared to use of indirect methods. Recently, the MUSLE has frequently been used as a module for hydrological models, such as the Soul and Water Assessment Tool (SWAT) (Qiu et al. 2012, Yang et al. 2012), to estimate sediment yield. In these studies, the MUSLE is used in its original form and no modification is usually considered. In some cases, the weakness of the main model is attributed to its dependence on many empirical and semi-empirical models, such as SCS-curve number and MUSLE, which cause the main model to have less accuracy.

The 49 MUSLE applications evaluated showed that the MUSLE model has been applied for different purposes of sediment yield estimation, i.e. on a storm basis (in 73.91% of studies; see Table 1), on a monthly basis (2.17%) (Shen *et al.* 2009) and an annual basis (17.39%; Table 1), as well as for estimation of soil erosion on a storm-wise scale (Esmali and Abedini 2009), for pollutant estimation (Noor *et al.* 2010) and annual sediment yield with different return periods (in 2.17% of cases each). While the MUSLE model has been basically developed for estimation of sediment yield from large storm events occurring on rangeland watersheds (Williams and Berndt 1977), its

application in other conditions was found by other researchers to generate high errors sometimes very different from the observed data. The research reports assessed here show application of the MUSLE model in various land-use scenarios (with percentage of studies): pasture (17.39%), agricultural (6.52%), forest (15.22%), pasture-agricultural (10.87%), forestpasture (2.17%), forest-agricultural-urban (10.87%), forest-pasture-agricultural (4.35%) and agriculturalurban (2.17%); the type of land use was not reported in 15.22% of studies.

Owing to differences between observed and estimated values, attempts have been made to calibrate the MUSLE through adjusting the power or the coefficient of models in some studies (Jackson et al. 1987, Epifanio et al. 1991, McConkey et al. 1997, Khajehie et al. 2002, Rezaiifard et al. 2002, Sadeghi et al. 2004, 2007b, Sarkhosh et al. 2004, Khaledi Darvishan et al. 2009, Noor et al. 2010). In two studies (Chen and Mackay 2004, Varvani et al. 2006), only the power of the model was calibrated, which is logically more acceptable. The necessity of model calibration was also emphasized in those studies in which no calibration adjustment had been made. The minimum, median, maximum and standard deviation of the coefficient of the MUSLE in all the studies were found to be 0.001, 0.15, 6.38 and 17.25, respectively. Out of 46 studies, almost 22% had included calibration of the coefficient, whereas another 50% gave appropriate results. In the remaining 28%, the coefficient was not revised, although the necessity of calibration was emphasized. The minimum, median, maximum and standard deviation of the model power were calculated as 0.081, 0.745, 0.70, 1.12 and 0.3, respectively. The model power was calibrated in only 28.26% of the studies; another 43.48% did not undertake any calibration because they produced reasonable results, whereas, for the rest, revision is needed.

Our results also showed overestimation by the MUSLE model in some studies, while in other studies, the model underestimated the measured values (see Table 1). In other cases, conducted in USA watersheds (Williams 1977, Jackson *et al.* 1987, Santos and Canino 1997, Golson *et al.* 2000, Zhang *et al.* 2009), or under similar climatic conditions to that of the original location (Table 1), the model presented good estimates.

According to the results of the present study, it can be concluded that the application of the MUSLE model may produce reasonable estimates when it is applied under appropriate conditions similar to those where the original model was developed (Table 1) or calibrated accordingly. In this context, the MUSLE model values showed a significant difference with measured sediment yield in many watersheds in Iran (Afcheh, Amameh, Shahrchaii, Gharehchi, Chehelgazi and Kojor), the USA (Pheasant Branch and Foothill Range Field Station), western Canada, Kenya (Nyando and Nzoia) and Japan (Mie). The MUSLE model was then calibrated in these study areas (Jackson et al. 1987, Epifanio et al. 1991, McConkey et al. 1997, Khajehie et al. 2002, Rezaiifard et al. 2002, Chen and Mackay 2004, Sadeghi and Mahdavi 2004, Sadeghi et al. 2004, 2007b, Ma 2006, Varvani et al. 2006, Khaledi Darvishan et al. 2009, Noor et al. 2010). The model presented reliable results for sediment yield on a storm basis after calibration and with a low level of estimation error (Sadeghi et al. 2007b), as originally developed by Williams (1975). Therefore, the unusual application of the MUSLE model, i.e. for estimation of soil erosion (Sadeghi et al. 2004, Esmali and Abedini 2009) or nutrient loss (Noor et al. 2010) provides inappropriate predictions at the watershed scale, or even at the plot scale (Sadeghi 2004, Kinnell 2005, 2010, Khaledi Darvishan 2009).

However, an accurate estimation of sediment yield requires a sufficient number of samples or sedimentgraph preparation to give an appropriate basis for comparison and model calibration (Cordova 1981, Smith *et al.* 1984, Jackson *et al.* 1987, Banasik *et al.* 1988, Epifanio *et al.* 1991, McConkey *et al.* 1997, Santos and Canino 1997, Erskine *et al.* 2002, Khajehie *et al.* 2002, Mahmoudzadeh *et al.* 2002, Rezaiifard *et al.* 2002, Cambazoglu and Gogos 2004, Chen and Mackay 2004, Sadeghi and Mahdavi 2004, Sarkhosh *et al.* 2004, Basson 2005, Kinnell 2005, Porabdullah 2005, Appel *et al.* 2006, Ma 2006, Varvani *et al.* 2006, Abdulla and Eshtawi 2007, Arekhi 2007, Jaramillo 2007, Sadeghi *et al.* 2007a, 2007b, 2008, Khaledi Darvishan *et al.* 2009, Kinnell 2010, Noor *et al.* 2010).

Although the MUSLE model has provided good results in some areas, review of the correct values and exact variables used and final conclusions of the application are strictly recommended in order to apply the MUSLE model correctly. Further studies and investigations are needed to draw a comprehensive conclusion.

REFERENCES

Abdulla, F.A. and Eshtawi, T., 2007. Application of automated geospatial watershed assessment (AGWA) tool to evaluate the

sediment yield in a semi-arid region: case study, Kufranja Basin-Jordan. Journal of Civil Engineering, 1 (3), 234-244.

- Aksoy, H. and Kavvas, M.L., 2005. A review of hillslope and watershed scale erosion and sediment transport models. *Catena*, 64, 247–271.
- Appel, K., et al., 2006. Soil-erosion modelling along badland hillslopes in a dryland environment of NE Spain. Geophysical Research Abstracts, 8, 02874.
- Arekhi, S., 2007. Estimating erosion and sediment yield using KW-GIUH and MUSLE models in GIS environment. In: 3rd Watershed and soil and water resources management of Iran. Kerman: Shahid Bahonar University, 711–716. 10–12 January 2008. (In Persian.)
- Asokan, K., 1981. Runoff and sediment yield from Bino subwatershed of Ramganga Catchment. Thesis (M-Tech), Govind Ballabh Pant University of Agriculture and Technology, Pantnagar.
- Banasik, K., 1985. Applicability of the Universal Soil Loss Equation for predicting sediment yield from small watershed in Poland. *In: International symposium on erosion, debris flow and disaster prevention.* Tsukuba: The Erosion Control Engineering Society of Japan, 85–88, 3–5 September.
- Banasik, K., et al., 1988. Estimation of deforestation effect on flood flow and sediment yield from a small Carpathian watershed. In: International Symposium Interpraevent. Tagungspublikation, Band 1. Austria: Seite, 175–184, 1988–Graz.
- Banasik, K. and Walling, D.E., 1996. Predicting sedimentgraphs for a small agricultural catchment. Nordic Hydrology, 27, 275–294.
- Basson, G., 2005. Erosion and sediment dynamics from catchment to coast a southern perspective. Thesis (MSc), University of Stellenbosch, South Africa Water Research Commission. 38 p.
- Beasley, D.B., et al., 1980. ANSWERS: a model for watershed planning. Transactions of the ASAE, 23, 938–944.
- Blaszczynski, J., 2003. Estimating watershed runoff and sediment yield using a GIS interface to Curve Number and MUSLE models. Soil Geology, Resource Note 66, 2 p.
- Cambazoglu, M.K. and Gogos, M., 2004. Sediment yields of basins in the Western Black Sea region of Turkey. *Turk Journal of Engineering Environmental Science*, 28, 355–367.
- Cardei, P., 2010. The dimensional analysis of the USLE-MUSLE soil erosion model. *Proceedings of Romanian Academy*, 12 (3), 249–253.
- Chakrabarty, A., et al., 2007. Environmental impact study of a pumped storage project on hillytract of Purulia—a remote sensing GIS analysis [online]. ACRS 2008. 9 pp. Available from: http://www.a-a-r-s.org/acrs/proceeding/ACRS2008/ Papers/TS%209.1.pdf [Accessed 10–14 November 2008].
- Chang, M., 2006. Forest hydrology, an introduction to water and forest. 2nd ed. Ames: Iowa State University.
- Chen, E. and Mackay, D.S., 2004. Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model. *Journal of Hydrology*, 295, 211–224.
- Cordova, A.J., 1981. The effectiveness of a sediment and erosion control ordinance. Thesis (MSc), Columbia University, Richland County, South Carolina.
- Das, G., 1982. *Runoff and sediment yield from Upper Ramganga Catchment*. PhD Dissertation, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar.
- DeCoursey, D.G. and Snyder, W.M., 1969. Computer-oriented method of optimizing hydrologic model parameters. *Journal* of Hydrology, 9, 34–56.
- Epifanio, C.R., et al., 1991. Hydrologic impacts of oak harvesting and evaluation of the modified universal soil loss equation. In: R.B. Standiford, ed. Proceedings of the symposium on Oak Woodlands and Hardwood rangeland management, US Department of Agriculture, Forest Service, General Technical Report PSW-126, 221–224.

- Erskine, W.D., et al., 2002. Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. Catena, 49, 271–287.
- Esmali, A. and Abedini, M., 2009. Estimation of soil erosion rates using emprical models for determining their efficiency and accuracy comparing in Pole-Almasi catchment, Ardabil. *In: 4th watershed and soil and water reources management of Iran.* Kerman: Shahid Bahonar University, 657–660, 2–3 December 2009. (In Persian.)
- Fontes, J.C., et al., 2004. Runoff and erosion in volcanic soils of Azores: simulation with OPUS. Catena, 56, 199–212.
- Foster, G.R., Meyer, L.D., and Onstad, C.A., 1977. A runoff erosiovity factor and variable slope length exponents for soil loss estimates. *Transaction of the ASAE*, 20, 683–687.
- Golson, K.F., et al., 2000. Evaluating modified rainfall erosivity factors in the Universal Soil Loss Equation. In: Geoscience and remote sensing symposium, 24–28 July. Honolulu: IGARSS 2000, 5, 2017–2020.
- Haan, C.T., et al., 1994. Design hydrology and sedimentology for small catchments. San Diego, CA: Academic Press, 588 p.
- Hosseini, S.S. and Ghorbani, M., 2005. *Economic of soil erosion*. Mashhad: Mashhad University. (In Persian.)
- Hrissanthou, V., 2005. Estimate of sediment yield in a basin without sediment data. *Catena*, 64, 333–347.
- Jackson, W.L., *et al.*, 1987. Use of the Modified Universal Soil Loss Equation for average annual sediment yield estimates on small rangeland drainage basins. *IAHS Publication*, 159, 413–422.
- Jaramillo, F., 2007. Estimating and modeling soil loss and sediment yield in the Maracas-St. Joseph River catchment with empirical models (RUSLE and MUSLE) and a physically based model (Erosion 3D). Thesis (MSc), Civil and Environmental Engineering Department, McGill University, Montreal.
- Kandrika, S. and Dwivedi, R.S., 2003. Assessment of the impact of mining on agricultural land using erosion–deposition model and space borne multispectral data. *Journal of Spatial Hydrolology*, 3, 6–22.
- Kandrika, S. and Venkataratnam, L., 2005. A spatially distributed event based model to predict sediment yield. *Journal of Spatial Hydrology*, 5, 1–19.
- Khajehie, A., et al., 2002. Study of application capabilities of MUSLE model for storm-wise and annual sediment yield prediction in Shahrchai watershed. Arak: Soil Conservation and Watershed Management Research Centre/Jihad-e-Agriculture Organization of Markazi Province/Natural Resources and Livestock Research Centre of Markazi Province, 436–446, 22–24 January. (In Persian.)
- Khaledi Darvishan, A.V., et al., 2009. Comparison of efficacy and calibration of MUSLE-E and MUSLE-S models in storm-wise sediment estimation. In: The 5th national conference on watershed management. Gorgan, Iran, 22–23 April 2009. (In Persian.)
- Kinnell, P.I.A., 2001. The USLE-M and modeling erosion within catchments. In: D.E. Slott, R.H. Mohtar, and G.C. Steinardt, eds. Selected papers from the 10th international soil conservation organization meeting, 24–29 May 1999. Purdue University and the US Department of Agriculture-ARS National Soil Erosion Research Laboratory, 924–928.
- Kinnell, P.I.A., 2005. Why the universal soil loss equation and the revised version of it do not predict event erosion well. *Hydrological Processes*, 19, 851–854.
- Kinnell, P.I.A., 2010. Event soil loss, runoff and the universal soil loss equation family of models. *Journal of Hydrology*, 385, 345–397.
- Kinnell, P.I.A. and Riss, L.M., 1998. USLE-M: empirical modeling rainfall erosion through runoff and sediment concentration. *American Soil Science Society Journal*, 62, 1662–1672.
- Laflen, J.M. and Moldenhauer, W.C., 2003. *The USLE story*. Special Publication No 1. Beijing: WASWC.

- Lpez-Tarazn, J.A., *et al.*, 2012. The sediment budget of a highly dynamic mesoscale catchment: the River Isbena. *Geomorphology*, 138 (1), 15–28.
- Ma, N., 2006. Mathematical modelling of water soil erosion and sediment yield in large catchments. Thesis (MSc), University of Stellenbosch. 188 pp.
- Madeyski, M. and Banasik, K., 1989. Applicability of the modified universal soil loss equation in small Carpathian watersheds. *Catena Supplement*, 14, 75–80.
- Mahmoudzadeh, A., *et al.*, 2002. Sediment yields and soil loss rates from native forest, pasture and cultivated land in the Bathurst area, New South Wales. *Australian Forestry Journal*, 65 (2), 73–80.
- McConkey, B.G., et al., 1997. Sediment yield and seasonal soil erodibility for semiarid cropland in Western Canada. Canadian Journal of Soil Science, 77 (1), 33–40.
- Mishra, P. and Ravibabu, R., 2009. Simulation of storm sediment yield from an agricultural watershed using MUSLE, remote sensing and geographic information systems. *Journal of Soil* and Water Conservation, 8 (3), 12–21.
- Mishra, S.K., et al., 2006. SCS-CN-based modeling of sediment yield. Journal of Hydrology, 324, 301–322.
- Nicks, A.D., et al., 1994. Estimating soil erosion with models having different technologies. In: Proceedings of the 25th Annual Conference on International Erosion Control Association, 15–18 February, Reno, NV, 51–61.
- Noor, H., et al., 2010. Application of MUSLE for the prediction of phosphorus losses. Water Science and Technology, 62 (4), 809–815.
- Novotny, V. and Olem, H., 1994. Water quality: prevention, identification, and management of diffuse pollution. New York: Wiley.
- Pandey, A., Chowdary, V.M., and Mal, B.C., 2009. Sediment yield modelling of an agricultural watershed using MUSLE, remote sensing and GIS. *Paddy and Water Environment*, 7, 105–113.
- Porabdullah, M., 2005. Comparison of RUSLE and SWAT models in estimation of watershed erosion. Thesis (MSc), University of Sanati Sharif, Environmental Engineering. (In Persian.)
- Qiu, L.J., et al., 2012. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: capabilities and challenges. *International Journal of Sediment Research*, 27 (2), 226–234.
- Rezaiifard, M., et al., 2002. Study of MUSLE model application in storm-wise sediment prediction in Afcheh subwatershed. Arak: Soil Conservation and Watershed Management Research Centre/Jihad-e-Agriculture Organization of Markazi Province/ Natural Resources and Livestock Research Centre of Markazi Province, 534–542, 22–24 January. (In Persian.)
- Rostamian, R., et al., 2008. Application of SWAT2000 model in sediment and runoff estimation in Beheshtabad watershed of North Karun subwatershed. Journal of Scinece and Technology of Agriculture and Natural Resource, Water and Soil Science, 12 (46b), 517–531. (In Persian.)
- Sadeghi, S.H.R., 2004. Comparison of some methods to estimate rainfall erosivity. *Journal of Agricultural Sciences and Industries*, 19 (1), 45–52. (In Persian.)
- Sadeghi, S.H.R., et al., 2004. Efficacy of annual soil erosion models for storm-wise sediment prediction, Iran. International Journal of Agricultural Engineers, 13 (1&2), 1–14.
- Sadeghi, S.H.R., et al., 2007a. Conformity of MUSLE estimates and erosion plot data for storm-wise sediment yield estimation. *Terrestrial, Atmospheric and Oceanic Sciences*, 18 (1), 117–128.
- Sadeghi, S.H.R., et al., 2007b. Is MUSLE apt to small steeply reforested watershed? Journal of Forest Research, 12, 270–277.

- Sadeghi, S.H.R., et al., 2008. Comparison of sediment delivery ratio estimation methods in Chehelgazi watershed of Gheshlagh Dam. Journal of Agricultural Sciences and Industries, 22 (1), 141–150. (In Persian.)
- Sadeghi, S.H.R. and Mahdavi, M., 2004. Applicability of SEDIMOT II model in flood and sediment yield estimation. *Journal of Agricultural Sciences and Technology*, 6, 147–154.
- Sadeghi, S.H.R. and Singh, J.K., 2010. Derivation of flood hydrographs for ungauged upstream subwatersheds using a main outlet hydrograph. *Journal of Hydrologic Engineering*, 15 (12), 1059–1069.
- Santos, J.R. and Canino, G., 1997. Erosion and sediment transport in a proposed regional sanitary landfill. In: AIDIS; Colegio de Ingenieros y Agrimensores de Puerto Rico. Preservación del Ambiente y el Control de la Contaminación: Eslabones Indispensables para el Futuro de las Américas [online], June. San Juan: AIDIS, 1–8. Available from: http://www.bvsde.paho. org/bvsaidis/puertorico/lviii.pdf
- Sarkhosh, A., et al., 2004. Comparison and evaluation of MUSLE and MPSIAC models for sediment yield prediction in Darakeh watershed in Northern Tehran. Journal of Agricultural Sciences and Industries, 34 (3), 733–747. (In Persian.)
- Shen, Z.Y., et al., 2009. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agricultural Water Management, 96, 1435–1442.
- Smith, S.J., et al., 1984. Prediction of sediment yield from southern plains grasslands with the Modified Universal Soil Loss Equation. Journal of Range Management, 37 (4), 295–297.
- Varvani, J., et al., 2006. Assessment of the experimental models performance in watersheds sediment in time to single flood and provide modification coefficients. Journal of Natural Resources, 60 (4), 1125–1239. (In Persian.)
- Wambua, R.M., et al., 2009. Classification of catchment risk areas using spatially distributed event-based soil erosion: a case of

Upper Njoro River catchment, Kenya. *Journal of Design and Nature*, 3 (4), 281–295.

- Williams, J.R., 1975. Sediment-yield prediction with Universal Equation using runoff energy factor, present and prospective technology for predicting sediment yield and sources. ARS-S-40. Brooksville, FL: US Department of Agriculture, Agricultural Research Service, 244–252.
- Williams, J.R., 1977. Sediment delivery ratios determined with sediment and runoff models. *In: Erosion and solid matter transport in inland water*: Proceedings of Paris Symposium, July 1977, IAHS Publication, 122. Wallingford: IAHS Press, 168–179.
- Williams, J.R. and Berndt, H.D., 1977. Sediment yield prediction based on watershed hydrology. *Transactions of the American Society of Agricultural and Biological Engineers* [online], 20 (6), 1100–1104. Available from: http://itia.ntua.gr/hsj/redbooks/122/iahs 122 0168.pdf
- Wischmeier, W.H. and Smith, D.D., 1965. Predicting rainfall erosion losses from cropland east of the Rocky Mountains [online]. Agricultural Handbook 282. Brooksville, FL: US Department of Agriculture—Agricultural Research Service, 47 p. Available from: http://naldc.nal.usda.gov/download/CAT79706928/PDF
- Wischmeier, W.H. and Smith, D.D., 1978. Predicting rainfall erosion losses—a guide to conservation planning [online]. Agriculture Handbook 537. Brooksville, FL: Science and Education Administration, US Department of Agriculture—Agricultural Research Service, 58 p. Available from: http://topsoil.nserl. purdue.edu/usle/AH 537.pdf
- Yang, C.S., et al., 2012. Simulation of soil and water loss in the Upper Huaihe River Basin using the Xinanjiang Model. Proceedings of Engineering, 28, 501–505.
- Zhang, Y., et al., 2009. Integration of Modified Universal Soil Loss Equation (MUSLE) into a GIS framework to assess soil erosion risk. *Journal of Land Degradation and Development*, 20, 84–91.