dH/dx = d [z + y + V2/(2g)] /dx = - Sf
Sf = hf / L
where hf is the head loss due to friction and L is the length of the channel reach.
d [y + V2/(2g)] /dx = - (dz/dx) - Sf
dz/dx = (z2 - z1) / L
- dz/dx = (z1 - z2) / L = So
d [y + V2/(2g)] /dx = So - Sf
d [y + Q2/(2gA2)] /dx = So - Sf
dy/dx + d [Q2/(2gA2)] /dx = So - Sf
dy/dx - [Q2/(gA3)] (dA/dx)= So - Sf
dy/dx - [Q2/(gA3)] (dA/dy) (dy/dx)= So - Sf
dA/dy = T
dy/dx { 1 - [(Q2T) / (gA3)]} = So - Sf
dy/dx = (So - Sf) / { 1 - [(Q2T) / (gA3)]}
Sf = V2 / (C2R)
Sf = Q2 / (C2A2R)
R = A / P
Sf = (Q2P) / (C2A3)
dy/dx = {So - [(Q2P) / (C2A3)]} / { 1 - [(Q2T) / (gA3)]}
dy/dx = {So - [(g/C2) (P/T) [(Q2T) / (gA3)]} / { 1 - [(Q2T) / (gA3)]}
F2 = V2/(gD) = Q2/(gA2D) = (Q2T) / (gA3)
dy/dx = [So - (g/C2) (P/T) F2] / (1 - F2)
So = (g/C2) (P/T) F2
So = f (P/T) F2
So = f (Pc/Tc) = Sc
dy/dx = [So - (P/T) (Tc/Pc) Sc F2] / (1 - F2)
dy/dx = (So - Sc F2) / (1 - F2)
(P/T) (Tc/Pc) ≅ 1
(P/T) ≅ (Pc/Tc)
dy/dx = (So - Sc F2) / (1 - F2)
dy/dx = Sy
Sy/Sc = [(So/Sc) - F2] / (1 - F2)
|
Go to Chapter 8B. |
|